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Introduction

Currently states, or groups of states, use differing recreational management
measures to meet pre-specified harvest targets
o Effectiveness of this strategy has been questioned through the years

Desire to explore new strategies for recreational management at MAFMC,;
important to investigate new techniques that may be more effective than this
yearly and somewhat ad hoc approach

Current process assumes similarity between years in fishing behavior and
population dynamics
o Process ignores many dynamic factors including implementation error,
changes to discard rates, population growth, and changes in availability
o Process rarely allows for a re-evaluation of performance



Introduction

This project designed to develop a new methodology that can:
o Perform better over time by accounting for more known pop dynamics
o Allowing for transparency in the specification setting process
o Assess uncertainty in management choices

Allow for application of risk tolerances and policies to management choices,
potentially leading to more stability in the management program

Moving from ad hoc harvest-based approach to a model-based approach may
allow for more inter-annual stability in recreational management by not being
directly subject to single year swings in MRIP harvest estimates



Bag X

Introduction Season Y
Min Size Z

e Proposed advantages of a model-based approach are:
o Performance could be enhanced as management stability will be
increased (improving buy-in and knowledge of regulations)
o Include more factors in model-based projections than status quo
process

e System could be designed where management will only
change if the recreational harvest exceeds or underperforms
relative to a threshold of uncertainty that exists in the output

o Potential for enhanced stability in management and better

recognizes that harvest estimates and population information are
both derived from statistical methods



Background - Generalized Additive Models (TOR 1)

e Extensions of generalized linear models
e Incorporate smooth nonparametric functions of predictor variables

e Advantages over other regression techniques:

o Additive structure
o Ability to capture nonlinear patterns without a priori knowledge of distribution
o Can control smoothness of predictor functions (variance vs. bias tradeoffs)

e Appropriate for prediction of harvest based on management measures and
population dynamics



Background- Generalized Additive Models (TOR 1)

Model configuration:

e Gamma distribution, log link
e Smoothing basis: low-rank thin plate splines

e Interactive effects fitted using tensor product smooths
o Interactions between RHL and management measures, year

e Model estimation via maximum likelihood with penalty term for smoothness of
regression splines
e Number of knots optimized in the model fitting process



Background - Data Details (TOR 1)

e Datasets include landing and discard estimates from MRIP beginning with the
initial year of federal coastwide management
o Estimates were further broken down by Year, State, and then Wave

e State specific regulations were refined to the Wave level
o Includes Season Length, Bag Limit, and Minimum Size

e RHLs, Recruitment (BSB only), and Spawning Stock Biomass were pulled
from stock assessments
e Recruitment was lagged after age at minimum length was calculated using a

Von Bertalanffy growth curve
o The recruitment value assigned to a row was lagged by the age of the fish minus 1 year



Background - Data Details (TOR 1)

e Changes to some metrics for black sea bass
o Bag_truncated for BSB
m Used because of historically high bag limit
o Recruitment_truncted for BSB
m  Most of the recruitment was in the order of magnitude of 50 billion or less, and the big
year class in 2012 was an order of magnitude higher

e Metrics that we considered but didn’t use

o Regionality groupings, groupings based on coastwide vs regional vs statewide measures, sea
surface temperature (SF only)



Potential Scales (TOR 2)

e The current configuration treats the management as a
coastwide unit

e Due to the way the data is organized, and because the model
has a state effect in it, the management units can be
configured from coastwide, to regional, to state by state

e The way this would be operationalized would be to run the
model and organize the predicted information by the desired
management unit post hoc




Diagnostics (TOR 3)

e Final Models: Black sea bass

Harvest = Year + s(Minimum Size) + s(Wave) + State + s(SeasonLength) + s(Bag)
+ Recruitment + s(Bag,RHL) + s(Year,RHL) + RHL

Discards = Year + s(Minimum Size) + s(Wave) + State + s(Bag) + s(Bag,RHL)
+ s(Year,RHL)



Diagnostics (TOR 3)
e Final Models: Summer flounder

Harvest = Year + s(Minimum Size) + s(Wave) + State + s(SeasonLength) + s(Bag)
+ s(Minimum Size, RHL) + s(Year, RHL)

Discards = Year + s(Minimum Size) + s(Wave) + State + s(SeasonLength) + s(Bag) + SSB
+ s(Year,RHL)



Diagnostics (TOR 3)

e A series of model diagnostics were performed
o Table of info is in the document, visualizations presented here
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Diagnostics (TOR 3)

e A series of model diagnostics were performed
o Table of info is in the document, visualizations presented here

Summer flounder - Harvest

Resids vs. linear pred.

Summer flounder - Discards
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Family: Gamma
Link function: Tog

Formula:
X ~ Year + s(MinLen, k = 4) + s(wave, k = 5, bs = "cc") +
Output (TOR 3) state + s(SeasonLen, k = 4) + s(Bag_trunc, k = 5) + LagRecruit +
te(Bag_trunc, RHL, bs = "fs", k = 6) + s(Year, RHL,
bs = "fs", k = 5)

Parametric coefficients:

e Final models: Black sea bass - Estimate std. Error t value Pr(>|t|)
(Intercept) 0.000e+00 0.000e+00 NA NA
HaWGSt Year 4,.886e-03 1.053e-04 46.402 < 2e-16 ¥¥%*
STateDELAWARE 7.432e-01 2.459%e-01 3.022 0.002603 **
StateMARYLAND 6.643e-01 2.466e-01 2.693 0.007245 *¥*
STateMASSACHUSETTS 1.040e+00 2.682e-01 3.877 0.000116 ¥**¥*
StateNEW JERSEY 2.796e+00 2.431e-01 11.503 < 2e-16 ¥¥%*
StateNEW YORK 1.882e+00 2.408e-01 7.815 2.06e-14 %%
STateNORTH CAROLINA -1.284e+00 2.521e-01 -5.092 4.58e-07 ¥¥**
StateRHODE ISLAND 3.489%e-01 2.337e-01 1.493 0.135973
StateVIRGINIA 8.650e-01 2.452e-01 3.528 0.000446 ***
LagRecruit 4.655e-07 2.557e-06 0.182 0.855602
Signif. codes: 0 ‘%%’ 0,001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 ° ' 1

Approximate significance of smooth terms:
edf Rref.df F p-value

s(MinLen) 2.000 2.255 6.396 0.000905 ¥

s(wave) 2.907 3.000 33.443 < 2e-16 ¥
s(SeasonLen) 2.480 2.784 6.716 0.000252 %%
s(Bag_trunc) 1.002 1.003 2.515 0.113466
te(Bag_trunc,RHL) 8.588 30.000 0.771 0.000943

s(vyear,RHL) 2.002 2.003 5.561 0.004012

signif. codes: 0 ‘**%' 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ° * 1

Rank: 57/58
R-s5q. (adj) = 0.407 Dpeviance explained
-REML = 8400.7 5Scale est. = 1.7766 n

49%
718
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Partal effect of Year

Output (TOR 3)
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Output (TOR 3)

e Retrospective analysis: Black sea bass - Harvest

Retrospective Analysis for Predictions of Previous Years
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Family: Gamma
Link function: Tog

Formula:
O t t TOR 3 X ~ Year + s(MinLen, k = 4) + s(wave, k = 5, bs = "cc") +
lJ F)lJ State + s(Bag_trunc, k = 5) + te(Bag_trunc, RHL, bs = "fs",
k = 6) + s(Year, RHL, bs = "fs", k = 5)

Parametric coefficients:

PY Final models: B|ack sea baSS - Estimate std. Error t value Pr(>|t])
(Intercept) 0.000e+00 0.000e+00 NA NA
H Year 5.395e-03 6.324e-05 85.309 < 2e-16 *%*
D|ScardS STateDELAWARE 1.348e+00 1.694e-01  7.954 7.03e-15 %¥%¥
StateMARYLAND 1.928e+00 1.689%e-01 11.417 < 2e-16 #¥*
STateMASSACHUSETTS 6.43%e-01 1.993e-01 3.231 0.00129 ¥**
StateNEwW JERSEY 3.146e+00 1.678e-01 18.745 < 2e-16 ***
StateNEW YORK 1.996e+00 1.670e-01 11.952 < 2e-16 #*¥*
STAateNORTH CAROLINA 1.838e-01 1.704e-01 1.079 0.28108
StateRHODE ISLAND -7.656e-02 1.623e-01 -0.472 0.63720
STateVIRGINIA 2.122e+00 1.681e-01 12.620 < 2e-16 ¥**¥
Signif. codes: 0 ‘**%' 0,001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ° ’ 1
Approximate significance of smooth terms:
edf Rref.df F p-value
s(MinLen) 2.685 2.881 11.721 8.05e-05 ¥
s (wave) 2.971 3.000 254.206 < 2e-16 ¥¥*
s(Bag_trunc) 1.005 1.006 13.629 0.000243 ¥
te(Bag_trunc,RHL) 14.953 30.000 2.819 < 2e-16 ¥
s(year,RHL) 3.451 3.758 7.652 1.01e-05 ¥¥*x
Signif. codes: 0 *‘¥*%*%' 0,001 ‘%%’ 0.01 ‘*’ 0.05 “.” 0.1 °* " 1
Rank: 53/54
R-sq. (adj) = -0.0377 Deviance explained = 61.7%

-REML = 9988.8 sScale est. = 0.94714 n =753



Output (TOR 3)

e Final models: Black sea bass - Discards
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Output (TOR 3)

e Retrospective analysis: Black sea bass - Discards

Retrospective Analysis for Predictions of Previous Years

Discards (#s)

2016
Year



Output (TOR 3)

Final models: Summer
flounder - Harvest

Family: Gamma
Link function:

Formula:

Tog

X ~ Year + s(MinLen, k = 4) + s(wave, k = 5, bs
State + s(SeasonLen, k = 4) + s(Bag, k

RHL, bs =
k =5)

£s&5 k

parametric coefficients:
Estimate std. Error t value

(Intercept) O.
Year 5.
StateDE -5.
StateMA -1.
StatemD -3.
StateNC 2
Statend 2
StatenNy 1
StateRI 1.
StatevAa 1
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edf R
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0 e veve
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Partal eMect of Year

Output (TOR 3)

e Final models: Summer flounder - Harvest
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Output (TOR 3)

e Retrospective analysis: Summer flounder - Harvest

Retrospective Analysis for Predictions of Previous Years
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Family: Gamma
Link function: Tog

Formula:
X ~ Year + s(MinLen, k = 4) + s(wave, k = 5, bs = "cc") +
Output (TOR 3) State + s(SeasonLen, k = 4) + s(Bag, k = 5) + SSB + s(vear,
RHL, bs = "fs", k = 5)

Parametric coefficients:

. . Estimate std. Error t value Pr(>|t|)
e Final models: Summer 000e+00 0.000e+00 NA NA

(Intercept) O. 0
. Year 5.361e-03 2.842e-04 18.865 < 2e-16 %%«

flounder - Discards stateDE 6.621e-02 1.648e-01 0.402 0.68807
stateMA -5.112e-01 1.905e-01 -2.683 0.00751 **
stateMmp 8.699e-01 1.713e-01 5.078 5.22e-07 %¥%x
statenc -2.134e+00 2.123e-01 -10.054 < 2e-16 %¥%x
staten] 3.034e+00 1.570e-01 19.323 < 2e-16 %%x*
stateNny 2.301e+00 1.581e-01 14.560 < 2e-16 %%x
staterI -2.461e-01 1.707e-01 -1.441 0.15004
stateva 2.124e+00 1.647e-01 12.893 < 2e-16 %*¥%x
SSB -2.303e-05 1.112e-05 -2.071 0.03880 *
Signif. codes: 0 ‘**%' 0,001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * ' 1

Approximate significance of smooth terms:
edf Rref.df F p-value
s(MinLen) 2.225 2.632 8.468 0.000469 ¥
s(wave) 2.976 3.000 192.076 < 2e-16 *¥**
s(SeasonLen) 2.490 2.804 7.018 0.000133 ¥
i
3.

s(Bag) 791 2.235 0.133 0.804725

s(Year,RHL) 722 3.936 5.558 0.000232 %

signif. codes: 0 *‘**%' 0,001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 * " 1
Rank: 27/28

R-sq. (adj) = 0.809 Deviance explained 75.3%

-REML = 6686.2 sScale est. = 0.82874 n 577



Partial effect of State

Output (TOR 3)

e Final models: Summer flounder - Discards
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Output (TOR 3)

e Retrospective analysis: Summer flounder - Discards

Retrospective Analysis for Predictions of Previous Years

Discards (#s)




Future Uses (TOR 4)

e This work can be used in two main ways in the

management system
o It can be used under the existing management system but
provides a more formal and standardized process
o It can be used to set the management measures for a new
management system such as the one under discussion
called the “Harvest Control Rule”

e The use of a modeling approach lends itself to

creation of tools to simplify the process
o Not everyone has skills in R or knows about GAMs, so Shiny
apps can be developed to facilitate accessibility to everyone
o Also extends the accessibility to managers




Future Uses (TOR 4)

e The development of Shiny app tools and the fact that the original
development of the approach is in R and uses existing packages in R allows

this work to be easily handed off to future analysts

o Also allows for future development and integration with other tools, such as economic
models...

e Switch to apps




Summary

e The project presents a technique that can be used to add
transparency and standardization in to the existing spec
setting process

e \We've done a fair amount of work on this, but lots of room

for improvement
o Continue exploring model configurations
o Incorporate new covariates to help with some of the elements not
yet covered in the existing work (i.e. economic or behavioral
covariates, environmental covariates, effort metrics, etc)

e The model can continue to be improved over time with
updated data



Summary

e Models seem to perform well and seem to be able to reproduce
past estimates with some degree of precision

e Would benefit from some simulation work
o An additional thought was to run the models sampling from the dependent
variables uncertainty to see if a more optimal set of coefficients can be
produced

e Allin all, we believe this is a valuable path to pursue for the two
species examined here, and subsequently extended to other
species of interest (i.e. bluefish, scup)




