Introduction to Scenario Planning

Diane Borggaard¹ and Dori Dick²

NOAA

DEPARTMENT OF CON

NOAA

FISHERIES

NATIONAL

¹ Protected Resources Division, Greater Atlantic Regional Fisheries Office, NMFS ² Ocean Associates, Inc. in support of Office of Protected Resources, NMFS

With thanks to Wendy Morrison³ for fisheries examples ³ Office of Sustainable Fisheries, NMFS

Presentation Overview

- Scenario Planning Overview
- NMFS Scenario Planning Efforts
 - Atlantic Salmon (Pilot)
 - North Atlantic Right Whale
 - Training Opportunities
 - Scenario Planning White Paper
- Other Scenario Planning Examples
 - Pacific Fisheries Management Council
 - Rhode Island

NMFS Scenario Planning Participant Views

"The Atlantic salmon climate scenario project was one of the best prioritization exercises I have ever participated in for salmon. The process that was developed enabled us to focus on all of the threats to salmon, rather than the ones that are easiest to address."

- Kim Damon-Randall, Deputy RA, GARFO

"The structure of the scenario planning brought together folks with diverse expertise and made tackling a "wicked" problem both manageable and intellectually stimulating. The outcome was truly a collective effort that I was pleased to be involved in."

- John Kocik, Protected Species Branch, NEFSC

Scenario Planning

- Provides framework to support decisions under conditions that are <u>uncertain</u> and <u>uncontrollable</u>
- Explores plausible alternative conditions under different assumptions
 - ➤Not prediction or forecast
 - ➤Does not have to be data intensive
- Flexible and adaptable process
 - E.g., Adapt management now to add necessary flexibility for future

Scenario Insight; Weeks et al. 2011, Park Science

General Framework

1. Clarify the focus and goals of the investigation (scope & time horizon)

2. Research to identify factors likely to shape the future (climate drivers)

Scenario Insight; NPS 2013, Handbook for practitioners

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 5

Identifying Drivers

- Climate/Physical Forces
- Biological/Social/Political/Economic/ Technological Forces
- Other Relevant Data Sources

Source: NOAA Climate Change Web Portal

AA FISHERIES

Source: USGS Climate Change Viewer

Source: Borggaard, Dick et al. 2019

General Framework

1. Clarify the focus and goals of the investigation (scope & time horizon)

2. Research to identify factors likely to shape the future (climate drivers)

> *4. Craft a plausible, challenging story for each scenario*

3. Combine drivers to create a scenario framework

Scenario Insight; NPS 2013, Handbook for practitioners

Scenario Framework Development

- Identify drivers that are most critical and uncertain
- Driver axes should be independent
- Each scenario should be:
 - ➤ Plausible
 - ➤ Relevant
 - ➤ Challenging
 - ➤ Divergent

General Framework

1. Clarify the focus and goals of the investigation (scope & time horizon)

2. Research to identify factors likely to shape the future (climate drivers)

3. Combine drivers to create a scenario framework

5. Use the scenarios for strategy, innovation, risk, vision-setting

4. Craft a plausible, challenging story for each scenario

Scenario Insight; NPS 2013, Handbook for practitioners

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 9

Generating and Assessing Options

Benefits of Scenario Planning

Early and broad risk identification

Alignment towards a common vision

Source: Scenario Insight

Challenges of Scenario Planning

For example:

- Out-of-the-box thinking if other issues considered higher priority or in an emergency event
- Limited number of scenarios
- Not predictive

Scenario Planning Examples

Key Organization(s)	Location
National Park Service	Acadia National Park; Assateague Island National Seashore, etc.
NOAA Greater Farallones National Marine Sanctuary	North-Central California Coast
Tijuana River National Estuarine Research Reserve	Tijuana River Estuary
GeoAdaptive, Florida Fish and Wildlife Conservation Commission	KeysMAP: Florida Keys Marine Adaptation Planning Project
University of Alaska Anchorage	Salmon 2050, Kenai Peninsula, Alaska
Point Blue Conservation Science	San Francisco Bay Estuary
Rhode Island Commercial Fisheries	Rhode Island

NMFS Climate-Ready Example Trajectory

Presentation Overview

- Scenario Planning Overview
- NMFS Scenario Planning Efforts
 - Atlantic Salmon (Pilot)
 - North Atlantic Right Whale
 - Training Opportunities
 - Scenario Planning White Paper
- Other Scenario Planning Examples
 - Pacific Fisheries Management Council
 - Rhode Island

Atlantic Salmon Scenario Planning Pilot

<u>Purpose</u>

To explore what NMFS can do to improve U.S. Atlantic salmon population resilience to changing conditions in riverine, estuarine, and marine habitats across its current range.

Focal Question (Initial)

How could the effects of climate change impact the watersheds and marine ecosystems over the next 75 years?

Source: Borggaard, Dick et al. 2019

NMFS Climate Adaptation Planning

Fish & Invertebrate Vulnerability Assessment (2016)

Overall vulnerability = very high

Atlantic salmon

Hare et al. 2016

Example Process Outline (Atlantic Salmon)

Driver Spreadsheets

- Climate/Physical Forces
- Biological/Social/Political/Economic/Techno Forces

Other Relevant Data Sources

Climate/Physical Variable	Expected G Chang	eneral eeeral ge	Specified Change Expected and Reference Period		Patterns of change		Confide	nce	Primary Source and	Context	
Sea surface temperature	Î	2050-2099 2060-80: ↑	2050-2099: ↑3.2 to 4°C 2060-80: ↑3 to 5°C						https://www.esrl.noaa.gov/psd/ipcc/oc Saba et al. 2016. doi.1002/2015JC011	n/ 346/full	
Precipitation	Ť	Biological, socia political, econor technological	rgical, social, Pro ical, economic, cha nological apj		ected ge (if cable)	Source	Source and context			Comments	
Ocean bottom temperature	¢	Freshwater habit availability	vater habitat Very bility uncer			http://ice.ecosheds.org/; http://db.ecosheds.org/viewerhttp://db.ecosheds.org/vie wer; Dan Kircheis' powerpoint; Atlantic salmon designated critical habitat. http://www.nmfs.noaa.gov/pr/pdfs/criticalhabitat/atlant			This variable incorpora dam removal; incident current habitat availab	ates many rov al take; and e ility and histo	
Sea surface pH (ocean acidification)	Ļ										
Sea surface salinity	No ∆ ta	Marine habitat	D	ata Tyj	pe/Dese	cription				Source	
Air temperature	Ŷ	Societal awarene	Northea	ast Oce	an Data	ı	ht	tp://	www.northeastoceandata.org/		
T 05 4 1 4		Species climate	State of	fRivers	ivers and Dams in Maine		faine ht	tps:/	os://wiki.colby.edu/display/stateofmaine2009/State+of+Rivers+and+Dams+		
flow	Ļ	vumeraointy	Maine	Maine GIS Data		ht	http://www.maine.gov/megis/catalog/				
		Rate and magnit greenhouse emis	it NE Coastal Acidificati National Climate Char (USGS)			NE Coastal Acidification		tp://1	necan.org/		
		national, interna				nge Viev	ver ht	tps:/	/www2.usgs.gov/climate_landuse/	/clu_rd/nccv.asp	

Scenario Matrix Evolution (early examples)

SHRUs &/or Transition

Free Flowing

- Climatic Conditions:
 - o Climate changes as expected
 - Less snow, earlier melt, precip more frequently falls as rain in winter
 - \circ $\;$ Higher winter/lower spring streamflow
 - o River temp increases
 - \circ Sea surface temp (SST) rises, Gulf of Maine warms uniformly
- Passage barriers removed/modified
- Salmon primarily affected by marine suitability, streamflow variability and temperature

Warmer, Wetter

Climatic Conditions

- Climatic Conditions:
 - o Climate changes as expected
 - Less snow, earlier melt, precip more frequently falls as rain in winter
 - \circ $\;$ Higher winter/lower spring streamflow $\;$
 - o River temp increases
 - o SST rises, Gulf of Maine warms uniformly
- Most passage barriers remain
- Salmon primarily affected by marine suitability, streamflow variability, temperature and barriers

Soggy but Hindered

High

Freshwater Accessibility

Hanging on by a Stream

- Climatic Conditions:
 - o Drier, warmer conditions prevails
 - $_{\odot}$ $\,$ Less snow; precip lower (e.g., for extended time period) $\,$
 - \circ $\;$ Higher winter/lower remainder of year streamflow
 - River temp increases (number of consecutive extreme hot days exceeding salmon threshold increases)
 - \circ $\;$ SST rises, Gulf of Maine warms uniformly
- Passage barriers removed/modified
- Salmon primarily affected by marine suitability, streamflow variability and temperature

(RCP 8.5)

- Climatic Conditions:
 - Drier, warmer conditions prevails
 - \circ $\;$ Less snow; precip lower (e.g., for extended time period)
 - \circ $\;$ Higher winter/lower remainder of year streamflow
 - River temp increases (number of consecutive extreme hot days exceeding salmon threshold increases)
 - \circ $\;$ SST rises, Gulf of Maine warms uniformly
- Most passage barriers remain
- Salmon primarily affected by marine suitability, streamflow variability, temperature and barriers

Low

Hot and Blocked

NOAA FISHERIES

Source: Borggaard, Dick et al. 2019

Scenario Development

Breakout Groups: Given the scenarios...

• What do the plausible futures mean for salmon?

Source: Borggaard, Dick et al. 2019

Generating Options

Breakout Groups: Given the scenarios...

• Assuming a scenario is a plausible future, what actions would you take to address them?

Generating Options: FREE FLOWING

· Jentify priority barries the remaining most . StEDS • Find Pathways to randous (safety, liability) buyouts . StEDS

prove renovals, oredrive fish possage · DOT replacements (emogency, non-energency)

· Forther barrier assessment found truthing

· remove high priority borners · improve regripmonty pointers

· thermal imagery (seeps)

Dams .

scenario was the future, what actions would you take now / within 5 years

regulate protect nigerian b

Stockin

Relationships / Collaboration

· improve state-· collaborate

No could's stormade regulations

Diver partners' Other metalines, barriers, barriers, barriers, comerciation

Do control community (Signing)

· Canada (tespech, exchange info

regulations

· land conser · Floodplai

· Strategy for

with bod use

torocted communication

rotiona

Source: Borggaard, Dick et al. 2019

Research

Outcomes

High priority examples:

- Conduct range-wide habitat analysis (e.g., map existing cold water refugia for DPS watersheds)*
- Evaluate migration behavior and survival assessment
- Conduct tagging/tracking studies in marine environment to understand how changing climate might affect survival

* = funded post-pilot workshop

Source: Borggaard, Dick et al. 2019

Recovery Plan

F3.0	Identify, maintain, protec	t and rest Atlantic	ore priority salmon	y freshwa	ter habitats for				
F3.1	Establish and implement a water temperature monitoring protocol in all SHRUs to support efforts to identify climate vulnerable and climate resilient habitats	A	1	1	Baseline	-	-	-	USFWS, Maine DMR, NMFS, NGO's
F3.2	Inventory and prioritize freshwater habitats that provide the best opportunity for salmon recovery, including climate resilient habitats, in all SHRUs	A	1	1	Baseline	-	-	_	Maine DMR, USFWS
F3.3	Protect and maintain freshwater and riparian habitats according to prioritization in all SHRUs	A	1	2	Calculated	\$ 5,000,000.00	\$ 25,000,000.00	Estimate's assumes \$5 million annual investment of roughly 45,000 acres/year that would provide some conservation benefit to salmon. This figure is estimated based on land acquisition efforts for the purpose of conservation made by the Lands for Maine's future program. This figure does not directly factor in restoration of freshwater	Lands For Maine's Future, Maine DMR, USFWS, NMFS, NGOs,

Source: USFWS and NMFS, 2019

North Atlantic Right Whale

<u>Purpose</u>

To explore future conditions for right whales throughout their range and develop possible options to address those conditions to improve recovery.

<u>Focal Question</u> What will affect/influence the recovery of right whales throughout their range over the next 60 years?

Source: NMFS, in prep.

Assessing Scenarios and Options

Atlantic Salmon & Right Whale Highlights

- Identified most critical and uncertain drivers
- Created plausible future scenarios of climate impacts to the species/ ecosystem
- Identified and prioritized actions across one or more futures
- Increased collaboration with partners to address an area of common concern
- Identified resource needs for recovery, data gaps, and climate change adaptation strategies
- Provided opportunity for participants to extract themselves from a "triage" approach to recovery, and insert themselves into advanced planning

Source: Borggaard, Dick et al. 2019; NMFS, in prep.

Thanks to:

Salmon Pilot: Federal Experts from NOAA (NMFS and ESRL), USFWS, USGS, USFS including:

Dan Kircheis Mike Alexander Matt Bernier Matt Collins Julie Crocker Kim Damon-Randall Rob Dudley Jon Hare Sean Hayes Mike Johnson John Kocik Wendy Morrison

Ben Letcher Nate Mantua Keith Nislow Vince Saba Rory Saunders Tim Sheehan Michelle Staudinger Jed Wright Joe Zydlewski Roger Griffis

Right Whale Exercise: Federal Experts from NOAA (NMFS and ESRL), MMC, NOS including:

Mike Asaro Diane Borggaard Colleen Coogan David Morin Peter Burns Kevin Madley Julie Crocker Sean Hayes Peter Corkeron/Allison Henry Henry Milliken Harvey Walsh Vince Saba Lance Garrison John Quinlan Laura Engleby/Jessica Powell Barb Zoodsma Shannon Bettridge Teri Rowles Jacqueline Pearson-Meyer Donna Wieting Lynne Barre Dave Wiley/Ben Haskell Becky Shortland Mike Alexander Quay Dortch Frances M.D. Gulland Peter Thomas Michael Runge Michelle Staudinger

Facilitator and Trainer: Jonathan Star (Scenario Insight) Support from: Offices of Protected Resources and Science and Technology

NMFS Scenario Planning Trainings

GARFO Training (2018)

• Overview of principles and hands-on exercises

Planning for a Changing Climate (2019-2023)

- Target: protected resource managers and scientists, others engaged in endangered species and marine resource conservation planning
- Climate smart principles, driver identification, vulnerability assessments, scenario planning
- Offered at U.S. FWS National Conservation Training Center and in a region annually

Scenario Planning White Paper

- Office of Sustainable Fisheries is working on a white paper that introduces scenario planning and summarizes 5-6 examples
- Coming ~Spring 2020

Slide: Courtesy of Wendy Morrison, NMFS F/SF

Presentation Overview

- Scenario Planning Overview
- NMFS Scenario Planning Efforts
 - Atlantic Salmon (Pilot)
 - North Atlantic Right Whale
 - Training Opportunities
 - Scenario Planning White Paper
- Other Scenario Planning Examples
 - Pacific Fisheries Management Council
 - Rhode Island

PFMC Climate & Communities Initiative

- PFMC is initiating a scenario planning exercise on the topic of shifting stock availability.
- Expected outcome = "the definition of tools, products, and processes necessary to react to potential future ecosystem states."

https://www.pcouncil.org/ecosystem-based-management/fishery-ecosystem-planinitiatives/climate-and-communities-initiative/

Slide: Courtesy of Wendy Morrison, NMFS F/SF Project Contact: Christopher Kit Dahl, PFMC

PFMC Climate & Communities Initiative-General Timeline

Timeframe	Activity
Early 2018	Science & management background documents & webinars
Late 2018	Council adds scenario planning to initiative
Summer 2019	Interview ~15 expert stakeholders
September 2019	Report to Council on plans
January 2020	Workshop to create scenarios
March 2020	Report to Council on progress
Spring 2020	Refine scenario descriptions
Fall 2020	Investigate management implications; assess whether management changes are needed

https://www.pcouncil.org/ecosystem-based-management/fishery-ecosystem-planinitiatives/climate-and-communities-initiative/

Slide: Courtesy of Wendy Morrison, NMFS F/SF Project Contact: Christopher Kit Dahl, PFMC

Resilient Fisheries Rhode Island

- SK funded project
- Aimed to create conversation among commercial fishing community about climate change
- Process included interviews with fishermen, webinars on climate issues and workshop to plan for the future

http://resilientfisheriesri.org/

Slide: Courtesy of Wendy Morrison, NMFS F/SF

Resilient Fisheries Rhode Island

http://resilientfisheriesri.org/

- Based on concerns heard in interviews, facilitators created four future scenarios with environmental and socio-political details.
- During the workshop fishermen were divided into four groups (1 group for each scenario) to:
 - Discuss how fishing would change under their scenario
 - Brainstorm proposed strategies
 - Rate proposed strategies from other groups as to how well it would work in their scenario
 - Identify win-win strategies

Slide: Courtesy of Wendy Morrison, NMFS F/SF

Resilient Fisheries Rhode Island

Results: 7 Goals and 32 tactics under the following strategy areas:

- Public relations (4)
- Civic engagement (4)
- The next generation (6)
- Innovative seafood marketing (4)
- Working waters and coastlines (4)
- Healthy habitats (4)

http://resilientfisheriesri.org/

Adaptive science & management (6)

Slide: Courtesy of Wendy Morrison, NMFS F/SF

Questions?

Diane Borggaard: diane.borggaard@noaa.gov Dori Dick: dori.dick@noaa.gov

Contact Info: