

Dorte Bekkevold
Senior Research Scientist
Silkeborg
Denmark

DTU Aqua
National Institute of Aquatic Resources

DNA the Molecule of Life

‘Genetics’ to 'Genomics’ ,
 10-100 DNA >>1000 DNA markers markers

Application for fisheries management

-Define management units
-Quantify the extent of divergence and connectivity between stock units
-Allow mixed-stock analysis with substantially increased resolution relative to morphology based data

- Species identification in time and space (including prey species)

Genomic analysis example: Atlantic salmon

- Genome: 2.97 billion bases
-ACTGCTGAAGGT............
$\bullet 46.598$ genes (37.206 coding for a specific protein)
- Links between genes and life histories

Example from Atlantic salmon

Size matters - sometimes

Sex-dependent dominance at a single locus maintains variation in age at maturity in salmon

Nicola J. Barson ${ }^{1 *}$, Tutku Aykanat ${ }^{2 *}$, Kjetil Hindar ${ }^{3}$, Matthew Baranski ${ }^{4}$, Geir H. Bolstad ${ }^{3}$, Peder Fiske ${ }^{3}$, Céleste Jacq ${ }^{4}$, Arne J. Jensen ${ }^{3}$, Susan E. Johnston ${ }^{5}$, Sten Karlsson ${ }^{3}$, Matthew Kent ${ }^{1}$, Thomas Moen ${ }^{6}$, Eero Niemelä ${ }^{7}$, Torfinn Nome ${ }^{1}$, Tor F. Næsje ${ }^{3}$, Panu Orell², Atso Romakkaniemi ${ }^{7}$, Harald Sægrov ${ }^{8}$, Kurt Urdal 8, Jaakko Erkinaro ${ }^{7}$, Sigbjorn Lien ${ }^{1}$ \& Craig R. Primmer ${ }^{2}$

Males and females share many traits that have a common genetic basis; however, selection on these traits often differs between the sexes, leading to sexual conflict ${ }^{1,2}$. Under such sexual antagonism theory predicts the evolution of genetic architectures that resolve this sexual conflict ${ }^{2-5}$. Yet, despite intense theoretical and empirical interest, the specific loci underlying sexually
known genetic architecture means that the evolutionary consequences of sexual conflict, particularly its importance in maintaining adaptive variation ${ }^{3,6,16}$, remains largely unknown ${ }^{14,16}$
The age at which an individual reproduces is a critical point in it life history. Age at maturity affects fitness traits including survival size at maturity and lifetime reproductive success ${ }^{17}$. Age at maturity

Genetics and size in Atlantic salmon

- A single gene (VGLL3) explains 39\% of the variation in age nt mntumtinn (- rinn nt riunn moturn)
- Gei Implications for management -Ger and stocking programmes

Barson et al.

 2015

Types of population/stock structure - a theoretical example

Genetic differences arise due to random and evolutionary processes

How are fish stocks managed?

Greenland cod fishery

ICES Advice 2011

Wieland \& Paulsen 2004

Sara Bonanomi

Historical commercial catches of Atlantic cod (Gadus morhua) in Greenlandic waters

DNA from 100 archived otoliths for each year

SCIENTIFIC REP:RTS

OPEN Archived DNA reveals fisheries and climate induced collapse of a major fishery

Received: 17 March 2015 Accepted: 16 September 2015

Sara Bonanomi ${ }^{1,2,{ }^{\dagger}}$, Loïc Pellissier ${ }^{3,{ }^{\dagger}}$, Nina Overgaard Therkildsen ${ }^{2,4}$, Rasmus Berg Hedeholm ${ }^{2,5}$, Anja Retzel ${ }^{2,5}$, Dorte Meldrup ${ }^{1}$, Steffen Malskær Olsen ${ }^{6}$, Anders Nielsen ${ }^{7}$, Christophe Pampoulie ${ }^{8}$, Jakob Hemmer-Hansen ${ }^{1}$, Mary Susanne Wisz ${ }^{9, \ddagger}$, Peter Grønkjær ${ }^{2,10,}{ }^{\text {, }}$

Cod example 2

Atlantic cod in the Baltic Sea

Atlantic cod in the Baltic Sea

Atlantic cod in the Baltic Sea

Scientific cruises sample mixed stocks

Genetically determined stock afiliation as either 'Eastern' (blue) or 'Western' (red) Baltic cod

Hemmer-Hansen et al. unpublished

Samples of juveniles ($<20 \mathrm{~cm}$) reveal recruiment dynamics

Highly dynamic distribution in time and space, likely also in response to climatic and biological drivers

d)

Atlantic cod in the W Baltic Sea - genetic marker based split stock assessment

The next 'perfect' example

Atlantic herring stocks and their mixing is now assessable with genetic markers throughout species' distibution

RESEARCH ARTICLE
Outlier Loci Detect Intraspecific Biodiversity amongst Spring and Autumn Spawning Herring across Local Scales
\leadsto Greenland
Samples of herring in spawning condition, representative of the biological units contributing to fisheries

State of the art: Taking advantage of genomics to do genetics

CCCTGCTITA GAAATGCTC

Sequencing genomes ($\sim 800 * 10^{6}$ bases) to obtain information about stock specific differences

From 9 mio. DNA sites to 48

Example of genetic data - one herring SNP marker out of 96

BioMark Fluidigm platform

Gene frequency differences and how they are used to determine the origin of a fish - an example

North Sea autumn
spawning herring

Gene 1
AA $=25 \%$ of fish
AC $=22 \%$
$C C=53 \%$
Gene 2
$T T=99 \%$ of fish
$T G=1 \%$
$G G=0 \%$

Norwegian spring spawning herring
AA $=81 \%$ of fish
$\mathrm{AC}=18 \%$
$\mathrm{CC}=1 \%$
$\mathrm{~T}=1 \%$ of fish
$\mathrm{TG}=1 \%$
$\mathrm{GG}=98 \%$

spawning herring

Gene 1
$A A=25 \%$ of fish
$A C=22 \%$
$C C=53 \%$
$T \mathrm{~T}=1 \%$ of fish
TG = 1\%
GG = 98\%

Probability of genotype (Gene 1 \& Gene 2) in:

North Sea $=0$

Norwegian $=0.8$

Population splits addressable with new markers

| Area | ICES management
 area/sub area | Stocks/populations
 assumed to
 contribute to mixed
 aggregation
 fisheries |
| :--- | :--- | :--- | :--- | (

Lesser sandeeel genomic study

When can we trust genetic data on stock units?
Robustness of result depends on the depth of the analysis

ATGCCCTAAAGGGTACTGA CССT. CTITTAGAAATGCTC TCGA GCATATGCCCTAAA GGGTA TGACCCTGCTTGT AGAAATGCTCTCGATGCATA TGCCCTAAAGGGTACTGAC CCTGCTATTAGAAATGCTCT CGATGCATATGCCCTAAATG GGTACTGACCCTGCTAGTA GAAATGCTCTCGATGCATAT GCCCTAAAGGGTACTGACC CTGCTCTTAGAAATGCTCTC GATGCATATC

And the list of species and stocks with genetic data keeps getting longer: Atlantic mackerel, sprat, mesopelagics,

Novel approaches to the application of molecular methods in ecosystem and fisheries assessment

The sceptical optimist: challenges and perspectives for the application of environmental DNA in marine fisheries

空
AAGE V. JENSENS FOND

DTU Aqua
National Institute of Aquatic Resources

Silage

- Fish was dissolved in $\sim 10 \mathrm{~L}$ of formic acid
- $250 \mu \mathrm{l}$ samples taken out and analyzed on qPCR.

Hansen et al. (unpublished data)

Costings of SNP analyses for input to assessment

Platform	Cost per individual (@ 2000	Bench \& bio- informatics time 2000 fish		
\# markers typed	50 100 200 100 SNPs SNP SNP SNP			
SNP array based (Fluidigm)	$14 €$	$20 €$	$34 €$	31 days
GT sequencing based*	$4 €$	$5 €$	$6 €$	~ 17 days

(* Estimate from Aykanat et al., J Fish Biol., 2016)

- Genetic studies are expensive - Not really and prices añ constantly decreasing
- Genetic results are often 'oversold’ - We have several cases proving the opposite. Genetic analyses cannot answer all management relevant questions, but lack of basic biological information leads to risk of less efficient management strategies
- Inconsistent interpretation of genetic results - Structural, historical sampling issues
- Importance of genetic information is far outweighed by other inputs to management decisions - Substantially better resolution with genetic markers. Time series are emerging. Potential for front user-based analyses onsite.
- Obstacle is implementation into assessment and management

