Recreational Demand Model Overview Core Stakeholder Workshop 11/8

Andrew (Lou) Carr-Harris andrew.carr-harris@noaa.gov
Social Sciences Branch, Northeast Fisheries Science Center

Objectives of the summer flounder recreational demand model (RDM)

1. Predict the impact of management strategies on:

- harvest;
- discards;
— angler welfare;
- other metrics of fishing success?

2. Evaluate economic and biological tradeoffs posed by alternative management strategies, such as:

- +/- bag limits;
] +/- minimum sizes, slots;
- other types of mgt. strategies?

Literature

- Similar applications of recreational demand modeling in fishery settings:
प Carr-Harris and Steinback 2020 - striped bass
- Lee et. al 2017- GoM cod and haddock

Lee et al. (2017)
Results - predicted spawning stock biomass 3 years out

Lee et al. (2017)
 Results - predicted removals next year

Lee et al. (2017)
 Results - predicted angler welfare next year

Figure 4. Aggregate Angler CV in 2014 Evaluated Over Seven Alternative Fishing Policies
Note: Policy A is used as the baseline policy.

Approach to the summer flounder RDM

1. Behavioral model

- Estimates angler preferences/drivers of fishing effort
- Uses data from a 2010 choice experiment survey

2. Fishery simulation

- Simulates the fishery using historical catch and effort data from MRIP
- Incorporates the results of behavioral model
- Measures the effect of mgt. strategies on anglers and fish

Estimate angler preferences Angler behavior model

- Data from a 2010 choice experiment (CE) survey
- Stated preference method for non-market valuation
- Non-market goods or attributes do not have well-defined markets, necessitating the use of alternative methods of valuation
- CEs ask people a series of questions that can be used to infer economic values, such as willingness-to-pay (WTP)
- Allow for valuation of virtually any policy-relevant attributes of interest (e.g., harvest, regulations, environmental quality), including those for which observational data are nonexistent or do not vary

Choice experiment data

- 2010 saltwater fishing survey
- Administered in conjunction with MRIP intercepts
- Four regional sub-versions (ME-NY, NJ, DE/MD, VA/NC)
- 10,244 surveys distributed, 3,234 returned (RR=31.5\%)

Saltwater Recreational Fishing Survey

Improve your fishing experiences!

Sponsored by NOAA Fisheries (National Marine Fisheries Service), Office of Science and Technology http://www.st.nmfs.noaa.gov/st5/index.html
This survey is voluntary and all responses are confidential.

Example choice experiment question

SEction B：Saltwater Fishing Trips

The following questions help us understand tradeoffs made by anglers when they go fishing．
Compare Trip A，Trip B，and Trip C in the table below，then answer questions 2A and 2B．
Compare only the trips on this page．Do not compare these trips to trips on other pages in this survey．

Trip Features	Trip A	Trip B	Trip C
ᄂ 亠凶 Regulations	2 Fluke， 20 ＂or larger	5 Fluke，21＂or larger	Go fishing for striped bass or bluefish
E Fish Caught	0 to 4 Fluke，25＂TL	8 Fluke，12＂TL	
いロ Fish Kept	0 to 2 Fluke	0 Fluke	
$\simeq \sim$ Regulations	10 Bl ．Sea Bass， $12.5{ }^{\prime \prime}$ or larger	15 Bl ．Sea Bass， $10^{\prime \prime}$ or larger	
芴	15 Bl ．Sea Bass， $9^{\prime \prime}$ TL	20 Bl ．Sea Bass，12＂TL	
\pm Fish Kept	0 Black Sea Bass	15 Black Sea Bass	
๑ Regulations	15 Scup， $11.5^{\prime \prime}$ or larger	20 Scup，11＂or larger	
认 ¢ ¢ Fish Caught	80 Scup，13＂TL	60 Scup， $10^{\prime \prime} \mathrm{TL}$	
2 Fish Kept	15 Scup	0 Scup	
Total Trip Cost	\＄90	\＄105	\＄160

Definitions：

－Regulations：The legal minimum size restriction and bag limit for this trip．
－Fish caught：The number of fish caught on this trip and the total length（TL）of those fish．
－Fish kept：The number of fish you can legally keep on this trip．
－Total trip cost：Your portion of the costs associated with this trip，including bait，ice，fishing equipment purchase or rental，daily license fees，boat rental fees，boat fuel，trip fees，and round trip transportation costs associated with traveling to and from the fishing location．Travel costs may include vehicle fuel，car rental，tolls，airfare，and parking．

Choose your favorite trip．（Please mark only one trip with a \square or a 図．）
Trip A \square
Trip B \square
Trip C
I would not go saltwater fishing

Behavioral model

- Random utility model framework
- $U_{i}=V_{i}+e$
- Select alternative with largest U
- Econometric model:
$V_{i}=f(\sqrt{\# \text { SF kept }}, \sqrt{\# \text { SF released }}, \sqrt{\# \text { other fish kept }}$,
$\sqrt{\# \text { other fish released }}$, Trip cost, Striper/bluefish alternative, No trip alternative)

Behavioral model results

Table 2 . Estimated utility parameters from panel mixed logit models.

	Mean parameters	ME-NY		NJ		DE/MD		VA/NC	
		Estimate	St. Error						
Fluke parameters	trip cost	$-0.012^{+* *}$	0.000	-0.009***	0.000	-0.009***	0.000	$-0.008^{* * *}$	0.000
	$\sqrt{\text { SF kept }}$	$0.559^{+* *}$	0.063	$0.762^{* * *}$	0.067	$0.807^{* *}$	0.051	$0.521 * * *$	0.033
	$\sqrt{\text { SF released }}$	-0.061	0.046	0.013	0.043	0.040	0.034	$0.108^{* * *}$	0.022
BSB parameters	$\sqrt{\text { BSB kept }}$	$0.275^{+* *}$	0.034	$0.174^{* *}$	0.034	0.239***	0.027	$0.192^{* *}$	0.019
	$\sqrt{\text { BSB released }}$	-0.021	0.024	0.015	0.025	-0.011	0.020	0.020	0.013
	$\sqrt{\text { scup kept }}$	$0.075^{+* *}$	0.021	$0.097^{* * *}$	0.021				
	$\sqrt{\text { scup released }}$	-0.010	0.015	-0.039**	0.016				
	$\sqrt{\text { WF kept }}$			$0.394^{* *}$	0.056	0.379**	0.045	$0.231^{* * *}$	0.032
	$\sqrt{\text { WF released }}$			0.093**	0.044	0.064^{*}	0.036	0.030	0.024
	$\sqrt{\text { RD kept }}$							$0.454^{* * *}$	0.040
	$\sqrt{R D \text { released }}$							$0.081 * * *$	0.025
	do not fish	$-2.641^{+4 *}$	0.252	$-2.095^{* * *}$	0.288	$-2.963^{* * *}$	0.259	$-3.908^{* * *}$	0.259
	fish for other species	$1.429^{* * *}$	0.181	$1.139^{* * *}$	0.208	0.645***	0.159	$0.454^{* * *}$	0.121
	No. choices	3460		2768		4514		8340	
	No. anglers	449		359		594		1072	
	Pseudo R^{2}	0.332		0.274		0.323		0.307	
	LL	-3203.6		-2785.2		-4236.5		-8010.3	
	LL(0)	-4796.6		-3837.3		-6257.7		-11561.7	
	AIC	6441.1		5612.3		8506.9		16062.6	
	BIC	6569.2		5765.9		8639.6		16239.4	

Notes: *, , and ${ }^{* * *}$ represent significance at the $10 \%, 5 \%$, and 1% level of significance, respectively. SF $=$ summer flounder, $\mathrm{BSB}=$ black sea bass, $\mathrm{WF}=$ weakfish, $\mathrm{RD}=$ red drum.

Estimated willingness-to-pay for keeping fish (ME-NY)

keeping 1 summer flounder $=$ keeping ~ 2 black sea bass
$=$ keeping ~ 7.5 scup

Willingness-to-pay for the first fish kept:

Fishery simulation overview

- Historical MRIP catch and effort data is used to simulate individual fishing trips under baseline and alternative mgt. strategies.
- Under the two scenarios, calculate:
- expected utility;
- probability of taking a trip;
- angler welfare;

- other metrics of fishing success?

Example choice occasion

Trip outcomes from a change in attributes based on 100 utility parameter draws.

Trip attributes	Baseline scenario $\left(\mathrm{s}^{0}\right)$	Alternative scenario $\left(\mathrm{s}^{1}\right)$
\# summer flounder kept	1	3
\# summer flounder released	4	1
\# black sea bass keep	1	4
\# black sea bass released	3	0
\# scup kept	0	0
\# scup kept	0	0
Trip cost	$\$ 55.85$	$\$ 55.85$

Trip outcomes

Trip probability	0.51	0.69
	$(0.44,0.58)$	$(0.62,0.75)$
Expected BSB harvest (prob. \times BSB keep)	0.50	2.75
Expected BSB releases (prob. \times BSB release)	$(0.43,0.57)$	$(2.49,3.00)$
Expected BSB mortality (harvest $+0.1 \times$ releases)	$(0.51,1.73)$	0
	0.66	2.75
$\mathrm{CV} \mathrm{s}{ }^{0} \rightarrow \mathrm{~s}^{1}$	$-\$ 64.90$	
	$(\$ 52.45, \$ 77.35)$	

Fishery simulation method

1. Simulate fishing trips, with each assigned:

- \#'s fish kept/released
- sizes of fish kept/released
- trip cost

2. Calibrate the model to baseline year (2019) MRIP effort estimates
3. Re-run under alternative conditions, calculate changes in metrics of interest

Fishery simulation data

- Catch-per-trip: MRIP aggregated across 3 regions (MA-NY, NJ, DE-NC)
- Catch-at-length: MRIP aggregated across 3 regions in baseline year, adjusts to the size distribution of the population in prediction years
- Regulations: state level
- Behavioral parameters: 4 regions (MA-NY, NJ, DE/MD, VA/NC)
- Trip cost data: state level by mode from 2017 expenditure survey data

Fishery simulation Data

2019 actual regulations

State	Period	Dates	Fluke regs.	BSB regs.	Scup regs.	Weakfish Regs.	Red drum regs.	Estimated \# directed fluke trips
MA	1	Jan 1. - May 17	closed	closed	30 fish, 9"	N/A	N/A	0
MA	2	May 18 -Sep. 8	5 fish, 17"	5 fish, 15"	50 fish, 9 "	N/A	N/A	92,813
MA	3	Sep. 9 - Oct. 9	5 fish, 17"	closed	30 fish, 9"	N/A	N/A	9,978
MA	4	Oct. 10 - Dec 31	closed	closed	30 fish, 9 "	N/A	N/A	1,460
NJ	1	Jan. 1 - May 14	closed	closed	50 fish, 9 "	1 fish, 13"	N/A	2,463
NJ	2	May 15 - June 30	3 fish, 18"	10 fish, 12.5"	50 fish, 9 "	1 fish, 13"	N/A	960,362
NJ	3	July 1-Aug. 31	3 fish, 18"	2 fish, 12.5"	50 fish, 9 "	1 fish, 13"	N/A	2,763,076
NJ	4	Sep. 1-Sep. 30	3 fish, 18"	closed	50 fish, 9 "	1 fish, 13"	N/A	810,316
NJ	5	Oct. 1-Oct. 31	closed	10 fish, 12.5"	50 fish, 9 "	1 fish, 13"	N/A	41,088
NJ	6	Nov. 1 - Dec. 31	closed	15 fish, 13"	50 fish, 9 "	1 fish, 13"	N/A	1,891

Fishery simulation - data

- Catch-at-length
- In baseline year, use distribution fitted (gamma) to recent MRIP data
- In prediction year, calculate and fit based on population abundance-at-length

Abundance-based catch-at-length example (fluke)

Fishery simulation

Data

- Catch-per-trip based on recent MRIP data
- Account for correlation in fluke and BSB catch through the use of copulas
\square Specify marginal distributions for each series, select copula function that generates data with similar correlation structure
- Catch-per-trip of other species assumed independent

Correlation between fluke and BSB

Observed catch on directed fluke trips, MA-NY 2019

Observed catch on directed BSB trips, MA-NY 2019

Fishery simulation
 Calibration

- Calibrate the model to baseline year (2019)
- Select N simulated trips so that $\sum_{n=1}^{N} p=$ actual \# of trips

Calibration results for summer flounder
 Harvest

Table 1. Simulated vs. estimated 2019 fluke harvest (\#'s fish)

state	Simulation (95\% CI)	$\begin{gathered} \text { MRIP } \\ (95 \% \mathrm{CI}) \end{gathered}$	Difference	\% difference
MA	57,627	55,386	2,241	4.0
	$(56,938$ 58,316)	$(26,630$ 84,142)		
RI	104,350	213,592	-109,242	-51.1
	$(103,250$ 105,449)	$(59,161$ 368,022)		
CT	91,145	89,843	1,302	1.4
	$(90,136$ 92,153)	$(56,326$ 123,360)		
NY	709,441	561,173	148,268	26.4
	$(701,566$ 717,316)	$(321,106$ 801,240)		
NJ	1,058,311	1,108,158	-49,847	-4.5
	$(1,047,499 \quad 1,069,124)$	$(740,721$ 1,475,595)		
DE	55,132	91,025	-35,893	-39.4
	$(54,733$ 55,532)	$(58,913$ 123,137)		
MD	75,912	79,371	-3,459	-4.4
	$(75,395 \quad 76,429)$	$(66,857$ 91,885)		
VA	106426	149,785	-43,359	-28.9
	$(105,963$ 106,889)	$(72,911 \quad 226,659)$		
NC	8,660	34,895	-26,235	-75.2
	$(8,604 \quad 8,716)$	$(23,833$ 45,956)		
Total	2,267,008	2,383,228	-116,223	-4.9
	(2244221 2289795)	$(1,908,190 \quad 2,858,266)$		

Calibration results for summer flounder Discards

state	Simulation (95\% CI)	$\begin{gathered} \text { MRIP } \\ (95 \% \text { CI) } \end{gathered}$	Difference	\% error
MA	226,302	224,421	1,881	0.84
	(224,099 224,099)	$(83,344$ 365,498)		
RI	1,168,887	1,319,352	-150,465	-11.40
	$(1,159,973 \quad 1,177,801)$	$(400,1942,238,510)$		
CT	1,025,365	1,065,404	-40,039	-3.76
	$(1,017,481 \quad 1,033,250)$	(674,356 1,456,452)		
NY	8,620,060	9,001,801	-381,741	-4.24
	$(8,551,801 \quad 8,688,317)$	$(6,144,099 \quad 11,859,503)$		
NJ	12,703,465	13,068,170	-364,705	-2.79
	$(12,607,124 \quad 12,799,806)$	(8,729,440 17,406,900)		
DE	663,235	441,178	222,057	50.33
	(660,637 665,833)	(302,647 579,708)		
MD	902,174	938,193	-36,019	-3.84
	$(898,782$ 905,567)	$(781,958$ 1,094,428)		
VA	1,307,589	1,367,380*	-61,986	-4.53
	$(1,304,510$ 1,310,668)	(761,049 1,973,711)		
NC	39,621	1,469	38,152	2,597.14
	$(39,442$ 39,801)	$(-1,410 \quad 4,348)$		
Total	26,656,701	28,359,562	-772,865	-2.82
	$(26,465,040 \quad 26,848,362)$	$(22,868,977 \quad 33,850,147)$		

*estimate exclude two anomalous observations that account for 933 k discarded fish

Calibration results for summer flounder Harvest-at-length

Kolmogorov-Smirnov test for equality of distribution functions:
Sim. model vs. assessment p-value $=0.084$
Sim. model vs. MRIP p-value $=.175$

Calibration results for summer flounder Discards-at-length

Kolmogorov-Smirnov test for equality of distribution functions:
Sim. model vs. assessment p-value $=0.390$
Sim. model vs. MRIP p-value $=0.043$

Calibration results for black sea bass

Harvest

Table 1. Simulated vs. estimated 2019 black sea bass harvest (\#'s fish)

state	Simulation (95\% CI)	$\begin{gathered} \hline \text { MRIP } \\ (95 \% \mathrm{CI}) \end{gathered}$	Difference	\% difference
MA	327,511	526,593	-199,083	-37.8
	$(326,810 \quad 328,211)$	$(321,668$ 731,519)		
RI	456,037	517,032	-60,996	-11.8
	$(455,216$ 456,856)	$(337,340$ 696,724)		
CT	668,207	515,601	152,606	29.6
	$(666,873$ 669,540)	$(276,600 \quad 754,602)$		
NY	1,575,259	157,7042	-1,783	-0.1
	$(1,571,983$ 1,578,534)	$(1,069,013$ 2,085,070)		
NJ	599,326	831,241	-231,915	-27.9
	$(597,729600,922)$	(539,811 1,122,671)		
DE	51,861	43,434	8,426	19.4
	$(51,758$ 51,962)	$(19,184$ 67,684)		
MD	139,200	129,431	9,768	7.5
	$(138,939$ 139,460)	$(58,667$ 200,196)		
VA	198,073	230,843	-32,771	-14.2
	$(197,808$ 198,336)	(-33,141 494,828)		
NC	221,275	151,998	69,276	45.6
	$(220,980$ 221,570)	$(-17,270$ 321,268)		
Total	4,236,748	4,523,220	-286,472	-6.3
	$(4,228,184$ 4,245,311)	$(3,762,717 \quad 5,283,723)$		

Calibration results for black sea bass Discards

Table 2. Simulated vs. estimated 2019 black sea bass discards (\#'s fish)

state	Simulation (95\% CI)	$\begin{gathered} \hline \text { MRIP } \\ (95 \% \mathrm{CI}) \end{gathered}$	Difference	\% difference
MA	2,392,956	2,728,800	-335,844	-12.31
	$(2,388,455 \quad 2,397,456)$	$(1,734,077 \quad 3,723,522)$		
RI	3,263,576	8,646,693	-172,647	-5.02
	(3,258,043 3,269,109)	$(6,471,292 \quad 10,821,676)$		
CT	3,239,776	2,624,762	615,014	23.43
	$(3,234,031 \quad 3,245,519)$	$(1,673,134 \quad 3,576,389)$		
NY	8,596,060	9,725,431	-1,129,371	-11.61
	$(8,580,162$ 8,611,958)	$(7,401,427$ 12,048,987)		
NJ	5,367,557	5,352,818	14,739	0.28
	$(5,352,499$ 5,382,613)	$(4,002,933$ 6,702,703)		
DE	463,846	378,300	85,545	22.61
	$(463,116$ 464,575)	$(203,933$ 552,667)		
MD	1,240,920	1,635,747	-394,827	-24.14
	$(1,238,929 \quad 1,242,909)$	$(4,005$ 3,267,489)		
VA	1,950,094	1,903,352	46,742	2.46
	$(1,948,118 \quad 1,952,068)$	$(1,045,363$ 2,761,340)		
NC	2,708,943	2,802,990	-94,047	-3.36
	$(2,706,037$ 2,711,847)	$(1,756,042$ 3,849,9370)		
Total	29,223,726	30,588,422	-1,364,696	-4.46
	$(29,169,744$ 29,277,708)	$(26,593,505$ 34,583,339)		

Simulation example

- Implemented a variety of regulations across states, holding everything else constant
- Assumed 100\% compliance
- Measured expected changes in angler welfare, harvest, discards, and effort

Actual and hypothetical regulations used in summer flounder simulation.

State	2019 actual regulations	2019 alternative regulations	Change actual \rightarrow alternative
MA	5 fish, $17 "$	5 fish, $19 "$	Min. size +2
RI	6 fish, $19 "$	6 fish, $21 "$	Min. size +2
CT	4 fish, $19 "$	4 fish, $17 "$	Min. size -2
NY	4 fish, $19 "$	4 fish, $16 "-19 "$	Slot limit
NJ	3 fish, $18 "$	3 fish, $18 "$	No change
DE	4 fish, $16.5 "$	4 fish, $16.5 "$	No change
MD	4 fish, $16.5 "$	No harvest	Harvest moratorium
VA	4 fish, $16.5 "$	No harvest	Harvest moratorium
NC	4 fish, $16.5 "$	No harvest	Harvest moratorium

Simulation results - angler welfare

Expected welfare responses to alternative regulations

state	Regulation change	$\begin{gathered} \hline \text { CV (\$) } \\ (95 \% \mathrm{Cl}) \\ \hline \end{gathered}$
RI	$19^{\prime \prime} \rightarrow 21^{\prime \prime}$ min	5,807,945
		$(4,288,726$ 7,327,164)
CT	$19^{\prime \prime} \rightarrow 17^{\prime \prime}$ min	-9,434,245
		$(-11,909,176-6,959,314)$
NY	$19^{\prime \prime} \rightarrow 16^{\prime \prime}-19^{\prime \prime}$ slot	-103,299,312
		$(-130,189,418-76,409,206)$
NJ	No change	-60,721
		$(-151,228$ 29,786)
DE	No change	61,426
		$(44,612 \quad 78,239)$
	4 fish, 16.5 " \rightarrow Harvest	
MD	moratorium	12,329,541
		$(10,463,853 \quad 14,195,228)$
	4 fish, 16.5 " \rightarrow Harvest	
VA	moratorium	12,359,496
		$(10,378,030$ 14,340,962)
NC	4 fish, 16.5 " \rightarrow Harvest	
	moratorium	996,390
		$(834,756$ 1,158,025)
Total		-79,747,696
		$(-10,3296,553-5,6198,839)$

[^0]
Simulation results - harvest

Expected harvest responses to alternative regulations

state	Regulation change	Change in harvest (\# fish) (95\% CI)	\% change in harvest (\# fish) (95\% CI)
RI	$19^{\prime \prime} \rightarrow 21^{\prime \prime} \mathrm{min}$	-72,528	-69.5
		$(-73,527-71,528)$	$(-69.78-69.2)$
CT	$19^{\prime \prime} \rightarrow 17^{\prime \prime} \mathrm{min}$	149,119	163.6
		$(143,972$ 154,266)	$(159.3167 .9)$
NY	$19^{\prime \prime} \rightarrow 16^{\prime \prime}-19^{\prime \prime}$ slot	1,652,488	232.9
		$(1,589,013$ 1,715,964)	$(225.9 \quad 225.9)$
NJ	No change	1,440	0.14
		(725 2,156)	(0.069 0.20)
DE	No change	-215	-0.39
		$\left(\begin{array}{ll}-235 & -196\end{array}\right)$	$\left(\begin{array}{ll}-0.42 & -0.35\end{array}\right)$
MD	4 fish, $16.5^{\prime \prime} \rightarrow$ Harvest moratorium	$-75,912$	-100
		$(-76,429 \quad-75,395)$	
VA	4 fish, $16.5^{\prime \prime} \rightarrow$ Harvest moratorium	-106,426	-100
		$(-106,889-105,963)$	()
NC	4 fish, $16.5^{\prime \prime} \rightarrow$ Harvest moratorium	$-8,660$	-100
		$(-8,716 \quad-8,604)$	()
Total		1,494,583	65.9
		$(1,428,199$ 1,560,966)	$(63.52$ 68.31)

Expected changes are in relation to actual regulations in 2019

Simulation results - discards

Expected discard responses to alternative regulations

state	Regulation change	Change in discards (\# fish) (95\% CI)	\% change in discards (\# fish) (95\% CI)
RI	$19^{\prime \prime} \rightarrow 21^{\prime \prime}$ min	14,058	1.20
		(872 27,245)	(0.071 2.33)
CT	$19^{\prime \prime} \rightarrow 17^{\prime \prime}$ min	-68,641	-6.69
		$(-85,964-51,317)$	$\left(\begin{array}{ll}-8.39 & -4.99\end{array}\right)$
NY	$19^{\prime \prime} \rightarrow 16^{\prime \prime}-19^{\prime \prime}$ slot	-729,826	-8.46
		(-903,398 -556,255)	$(-10.49-6.43)$
NJ	No change	12,545	0.09
		$(7,817$ 17,273)	(0.06 0.13)
DE	No change	493	0.07
		(405 580)	(0.06 0.08)
MD	4 fish, $16.5^{\prime \prime} \rightarrow$ Harvest moratorium	20,475	2.26
		$(12,424 \quad 28,527)$	(1.37 3.16)
VA	4 fish, $16.5^{\prime \prime} \rightarrow$ Harvest moratorium	55,728	4.26
		$(48,546$ 62,911)	(3.70 4.81)
NC	4 fish, $16.5^{\prime \prime} \rightarrow$ Harvest moratorium	4,956	12.51
		$(4,309 \quad 5,603)$	$(10.8414 .17)$
Total		-771,019	-2.89
		(-932,499 -609,538)	$\left(\begin{array}{ll}-3.50 & -2.27)\end{array}\right.$

Expected changes are in relation to actual regulations in 2019

Simulation results - effort

Expected demand responses to alternative regulations

state	Regulation change	Change in expected \# trips (95\% CI)	\% change in expected \# trips (95\% CI)
RI	$19^{\prime \prime} \rightarrow 21^{\prime \prime}$ min	-16,396	-3.47
		$(-20,797-11,994)$	$\left(\begin{array}{ll}-4.4 & -2.54\end{array}\right)$
CT	$19^{\prime \prime} \rightarrow 17^{\prime \prime}$ min	26,625	6.4
		$(19,399 \quad 33,851)$	(4.69 8.19)
NY	$19^{\prime \prime} \rightarrow 16^{\prime \prime}-19^{\prime \prime}$ slot	287,612	8.28
		$(209,778$ 365,445)	(6.037 10.51)
NJ	No change	261	0.01
		$\left(\begin{array}{ll}-321 & 844)\end{array}\right.$	$\left(\begin{array}{ll}-0.01 & 0.02)\end{array}\right.$
DE	No change	-142	-0.04
		$\left(\begin{array}{ll}-178 & -106\end{array}\right)$	$\left(\begin{array}{ll}-0.04 & -0.03)\end{array}\right.$
MD	4 fish, $16.5^{\prime \prime} \rightarrow$ Harvest moratorium	-27,129	-4.98
		$(-31,274-22,983)$	$\left(\begin{array}{ll}-5.74 & -4.21)\end{array}\right.$
VA	4 fish, $16.5^{\prime \prime} \rightarrow$ Harvest moratorium		
		-22,807	-2.90
		$(-26,424-19,191)$	$\left(\begin{array}{ll}-3.36 & -2.44\end{array}\right)$
NC	4 fish, $16.5^{\prime \prime} \rightarrow$ Harvest moratorium	-1,686	-6.32
		$(-1,972-1,399)$	$\left(\begin{array}{ll}-7.39 & -5.25\end{array}\right)$
Total		$(200,870)$	1.85
		$(128,216$ 273,523)	$\left(\begin{array}{ll}1.18 & 2.51)\end{array}\right.$

[^1]
Other model outputs

- Total summer flounder catch-, harvest-, discards-at-length
- Harvest and discards of other species caught on summer flounder trips

Goals of this workshop

- Define other types of model outputs that may be important to capture.
- Decide what types of management scenarios are important to model.

Advantages compared to current process

- Model accounts for:
- changes in availability
- changes in angler behavior/welfare
- species interactions
- Can be used to model the effect of slight to extreme changes in regulations
- With population projections, can be used to model regulations for multiple years

Feedback from SSC peer review

- SSC peer review comments focused mainly on two concerns

1. Sample selection
2. Out-of-sample predictive power

Thank you!

[^0]: Expected changes are in relation to actual regulations in 2019

[^1]: Expected changes are in relation to actual regulations in 2019

