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Executive Summary 

 

TOR 1. Develop methods to create data that if assessed with standard 
age-based approaches (e.g., VPA or ASAP) could exhibit a strong 
retrospective pattern.  

The stock assessment program WHAM (Woods Hole Assessment Model) was used to 

generate data that exhibited strong retrospective patterns when assessed with an age-based 

approach. There were two alternative sources for the retrospective pattern; unaccounted catch 

and an unknown increase in natural mortality. The magnitudes associated with each source were 

modified according to the specific scenario to produce a Mohn’s rho of approximately 0.5 for 

spawning stock biomass. This is a strong retrospective pattern and comparable to retrospective 

patterns seen in some stock assessments in the region. There were eight combinations of 

retrospective source, fishing history, and number of fishery selectivity blocks (each factor had 

two levels) that formed the 50 year base period. An index-based assessment was applied every 

other year during the next 40 years of the feedback period. The data available to the index-based 

methods contained noise in the observations, as would occur in actual stock assessments. For 

each scenario, index-based method, and control rule combination, 1,000 closed-loop simulations 

were performed.  

 

TOR 2. Identify a number of index-based methods and a range of harvest 
control rules for use in closed-loop simulation, using index-based data 
resulting from ToR 1.  

Thirteen index-based methods (12 individual methods and one ensemble approach) were 

selected from the large number of available methods for use in the closed-loop simulations. The 

selected methods reflect local use, common use elsewhere, or a newly developed approach being 

proposed for the region. When applied, the index-based methods used the natural mortality rate 

from the initial base period to reflect that the change in natural mortality was not known in the 

age-based assessment. There were two harvest control rules used. The first method simply 

applied the catch advice resulting from the index-based method directly. The second method 
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reduced the catch advice (multiplied it by 0.75) to approximate a decision that the original catch 

advice was an overfishing limit and that the acceptable biological catch should be reduced from 

it. In neither case did the size of the population modify the harvest control rule, as is sometimes 

done with age-based assessments, because many of the index-based methods do not have a way 

of determining current population abundance relative to a reference point. 

 

Table of Index based methods (IBM) with short description. A * in the description indicates the 

IBM is used in the Ensemble, while a # indicates that the IBM is used in a local assessment.  
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IBM Description 

AIM  An Index Method *# 

CC-FSPR  Catch Curve F40%SPR *  

CC-FM  Catch Curve F=M 

DLM  Dynamic Linear Model 

Ensemble Combination of models 

ES-FM  Expanded survey biomass F=M 

ES-Frecent  Expanded survey biomass recent F*# 

ES-FSPR  Expanded survey biomass F40%SPR *# 

ES-Fstable  Expanded survey biomass stable F 

Islope  common trend based IBM * 

Itarget  common level based IBM * 

PlanB  survey smoother *# 

Skate  catch/B driven *# 



TOR 3. Identify metrics from the index-based assessment results that could 
be used in evaluations of trade-offs in performance among harvest control 
rules and index-based methods.  

A total of 50 performance metrics were collected from the simulation results. All were 

based on the true population values that are known because this is a simulation exercise (would 

not be known in application of the index-based methods to real data). There were sets of 

performance metrics for spawning stock biomass, fishing mortality rate, and catch. The metrics 

were collected for either the short term, the first 6 years of the feedback period, or the long term, 

the last 20 years of a 40 year feedback period. The metrics included average values compared to 

the associated reference point, classification of whether an event occurred during the time period 

(e.g., F goes above Fmsy), or the number of years that an event occurred during the time period. 

Examples of how these performance metrics could be used to score the performance of the 

index-based methods are provided, but these are management decisions and are shown for 

demonstration purposes only. 

 

TOR 4. Evaluate the combinations of index-based methods and control 
rules using the metrics in ToR 3 to determine candidates for consideration 
by the Councils or other management authorities.  

The index based methods (IBMs) generally formed two groups in terms of performance. 

The first group consists of CC-FSPR, CC-FM, DLM, PlanB, ES-Frecent, and Islope, while the 

second group consists of Skate, AIM, ES-Fstable, ES-FSPR, ES-FM, Ensemble, and Itarget. The 

IBMs within these groups performed similarly in terms of both the mean values and the type of 

relationship between SSB/SSBmsy and catch/MSY. The first group generally had lower short 

term catch, lower long term F/Fmsy and higher SSB/SSBmsy than the second group. The second 

group had a more linear relationship between long term SSB/SSBmsy and catch/MSY than the 

first group. IBMs in the first group may be more suited for stocks that are thought to be in good 

condition, while IBMs in the second group may be more suited for stocks that are thought to 

need rebuilding. 

Multiple lines of evidence pointed to the retrospective source and the catch advice 

multiplier as the most important factor in determining performance of the IBMs. For some 

performance metrics, fishing history and interaction terms among factors were also important.  
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Overall, none of the IBMs considered in these simulations performed better than the 

rho-adjusted SCAA model. So in situations where an SCAA model is rejected due to a strong 

retrospective pattern, there should not be an expectation that an IBM will perform better than the 

rejected model. 

The reasons for why the IBMs grouped as they did according to the performance metrics 

is not understood at this time and in need of future research. The results of this study provide a 

basis for these explorations. Additional questions can also be addressed by the framework 

developed in this study. 

 

TOR 5. Provide guidance on specific situations that are and are not 
well-suited for a particular control rule or index-based method identified in 
ToR 4. 

 

For several IBMs, the variability among metrics was primarily due to the factor related to 

the cause of the retrospective pattern. Thus, if you cannot identify the likely (or dominant) source 

of a retrospective pattern (catch or M), then using an IBM sensitive to the retrospective source 

would be risky to the stock and fishery, and this risk could be avoided by using a method robust 

to this uncertainty. In this regard, the following methods were more robust to retro type: DLM, 

PlanB, ES-Frecent, Islope, and to some extent the two catch curve methods. We anticipate these 

methods would have more robust performance in situations where a retrospective pattern exists 

similar to that simulated in this project. 

A rebuilt stock (long term SSB/SSBmsy > 1) was greatest for the IBMs that were the 

least sensitive to the source of the retrospective pattern (CC-FSPR and CC-FM, DLM, PlanB, 

ES-Frecent and Islope). DLM, PlanB, and CC-FM and CC-FSPR achieved the greatest median 

SSB/SSBMSY, but catch was lowest for CC-FSPR and CC-FM. PlanB, Islope and ES-Frecent 

had the highest median catch among the methods that achieved rebuilding more than 50% of the 

time. 

Trade-offs in risk (overfishing and rebuilding) and rewards (catch) are inherent in 

management decisions. Balancing median catch close to MSY in the short-term while still 

maintaining a probability of at least 50% of achieving rebuilding was possible for the 
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ES-Frecent, PlanB, DLM, and Islope, although long-term median catch with these methods was 

far below MSY. This could indicate that these four methods are appropriate short-term models 

for management advice, but while they are employed other efforts should be invested to return to 

an age-based model. As noted in TOR 4, none of the IBMs consistently performed better than the 

SCAA with rho-adjustment, supporting the recommendation to use age-based approaches despite 

retrospective patterns. 

Caveats for the conclusions relate to the large, but by necessity limited, number of IBMs, 

scenarios, and simulations that could be conducted. The biological and fishery characteristics 

were based on local groundfish, other species or fisheries may have different performance for the 

IBMs. A single source, catch or M, and magnitude, 0.5, of retrospective pattern was considered, 

multiple, changing, and stronger retrospective patterns may lead to different performance of 

IBMs. The IBMs were applied every other year in the feedback period to mimic local 

application, but missing surveys could require 3 years before the next assessment could be 

conducted. By necessity, the IBMs were applied formulaically within the simulations, so review 

of data meeting IBM assumptions or poor diagnostics were not evaluated during this study, these 

results should be considered minimum performance of the IBMs. As with all research, many 

questions were raised during this study. The framework developed for these simulations is well 

suited to address many of them immediately or with minor modifications. The IBMWG 

recommends this work be continued to explore the results generated during this study as well as 

building on these results to address new questions.  

 

TOR 6. Create guidelines for setting biological reference points for 
index-based stocks. 

This term of reference requires additional study. Generally, it is challenging to generate 

appropriate biological reference points for index-based stocks because they lack production 

functions that allow examination of trade offs between catch and future population size. For this 

reason and due to time constraints, only general guidelines and ideas for future research are 

provided at this time. The framework developed for this project is well-suited for this additional 

research.  
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Working Group Process 

The working group (Appendix 1) met weekly from March to November via webinar due 

to travel restrictions associated with the Covid-19 global pandemic. All meetings of the working 

group were open the public (Appendix 2), with announcements made regarding connection 

information prior to each meeting through the dedicated website for the working group 

(​https://www.fisheries.noaa.gov/new-england-mid-atlantic/population-assessments/stock-assess

ment-working-group-index-based-methods-and-control-rules​). For each of the 41 meetings 

(Appendix 3), the chair prepared an agenda and often a set of prompts to allow working group 

members to contribute thoughts before the meeting. This asynchronous sharing of ideas through 

Google Docs allowed rapid progress to be made. The working group used a GitHub repository to 

share code used to run and analyze the simulations (​https://github.com/cmlegault/IBMWG​). A 

number of computer resources were used to run the actual simulations. Due to the large size of 

the resulting files (~300 GB in total), these files could not be stored on the GitHub repository, so 

were instead stored on Google Drive.  
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Introduction 

In the U.S., age-structured stock assessment models are used when possible to estimate 

annual stock abundance and fishing mortality rates, as well as management reference points. 

These models must undergo peer review, where an independent panel of experts determines 

whether or not results from the model are suitable as the basis for determining stock status and 

for setting catch advice.  There are a number of model diagnostics that are used to evaluate 

uncertainty and stability of assessment model results, but one that is commonly used and carries 

substantial weight in the review is the retrospective pattern.  A retrospective pattern is a 

systematic inconsistency among a series of sequential assessment estimates of population size (or 

other related assessment variables), based on increasing time periods of data used in the model 

fitting (Mohn 1999).  These inconsistencies in assessment estimates are indicative of one or more 

mismatches between model assumptions and patterns in the data used to fit the model.  Large or 

persistent retrospective patterns indicate an instability in model results, and may therefore be the 

basis for a peer review panel determining that model results are not suitable for management 

purposes (Punt et al. 2020).  

Many stock assessments in the Northeast U.S. have a history of strong, positive 

retrospective patterns in biomass estimates, whereby estimates of biomass are revised downward 

and estimates of fishing mortality rate are revised upward as new data are added to the model. 

NOAA Fisheries, the New England Fishery Management Council, the Mid-Atlantic Fishery 

Management Council, and the Atlantic States Marine Fisheries Commission manage these stocks 

and retrospective issues remain a challenge for managers when setting catch advice and tracking 

stock status.  This problem has been particularly acute for, but not limited to, stocks in the New 

England groundfish complex (NEFSC 2002a, 2005, 2008, 2015a, 2015b, 2017, 2019; Deroba et 
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al. 2010), managed under NOAA Fisheries and the New England Council’s Northeast 

Multispecies (Groundfish) fishery management plan. 

The magnitude of the retrospective pattern is typically measured with a statistic known as 

Mohn’s rho (Mohn 1999).  Stock assessments where the rho-adjusted (divide the terminal year 

estimate by one plus Mohn’s rho) value is outside the 90% confidence interval of the terminal 

year estimate of spawning stock biomass or fishing mortality rate are classified as strong 

retrospectives and the rho-adjusted values used for status determination and to modify the 

starting population for projections used to provide catch advice (Brooks and Legault 2016).  

There is no formal criteria in the region for rejecting an assessment based on Mohn’s rho, 

but large, positive values of rho (especially those persisting)  have played an important role in 

the rejection of recent age-based assessments for stocks including Atlantic mackerel (​Scomber 

scombrus​), Georges Bank Atlantic cod (​Gadus morhua​), Georges Bank yellowtail flounder 

(​Limanda ferruginea​), and witch flounder (​Glyptocephalus cynoglossus​; Deroba et al. 2010; 

Legault et al. 2014; NEFSC 2015a, 2015b).  In each of these cases, and another where the 

assessment rejection was not based on the retrospective pattern (black sea bass, ​Centropristis 

striatus; ​NEFSC 2012), the Councils have relied on a variety data-limited approaches for setting 

catch advice for these stocks ( McNamee et al. 2015; NEFSC 2015a, 2015b;  Wiedenmann 

2015).  These approaches have all been ad-hoc, and a recent analysis suggested that some of the 

data-limited approaches may not be suitable for stocks in the Northeast U.S. with a history of 

high exploitation rates (Wiedenmann et al. 2019).   In addition, large, positive retrospective 

patterns persist for a number of other stocks in the region (NEFSC 2019), raising concerns that 

additional stocks may rely on data-limited approaches in the future.  Additionally, many of these 

stocks are in rebuilding plans without a mechanism to track rebuilding progress, in the absence 
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of reference points.   A recent challenge also emerged in the 2020 stock assessments when 

index-based methods in place for some stocks were rejected and alternative index-based methods 

were pursued (i.e., red hake and Northern windowpane flounder). Therefore, there is an 

immediate need to identify suitable data-limited approaches for setting catch advice and stock 

status determination for stocks with age-based assessments that did not pass review. 

 Stocks assessments in the region are classified as either management track or research 

track assessments (see Box 1 for more details on the distinction).  Research track assessments 

can focus on individual stocks or they can be topic based.  Topic based assessments are meant to 

provide utility and application in future management track assessments.  The Index-Based 

Methods Working Group (IBMWG) was formed to conduct a topic based research track 

assessment to evaluate the suitability of a range of data-limited methods for setting target catches 

for stocks with assessments with strong retrospective patterns.  The Terms of Reference for the 

Index-Based Methods Research Track Stock Assessment are: 

1. Develop methods to create data that if assessed with standard age-based approaches (e.g., 

VPA or ASAP) could exhibit a strong retrospective pattern. 

2. Identify a number of index-based methods and a range of harvest control rules for use in 

closed-loop simulation, using index-based data resulting from ToR 1. 

3. Identify metrics from the index-based assessment results that could be used in evaluations 

of trade-offs in performance among harvest control rules and index-based methods. 

4. Evaluate the combinations of index-based methods and control rules using the metrics in 

ToR 3 to determine candidates for consideration by the Councils or other management 

authorities.  
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5. Provide guidance on specific situations that are and are not well-suited for a particular 

control rule or index-based method identified in ToR 4. 

6. Create guidelines for setting biological reference points for index-based stocks. 

To address the Terms of Reference the IBMWG developed a management strategy evaluation 

(MSE) simulation model (e.g., Punt et al. 2016).  MSE models are used to evaluate the tradeoffs 

associated with different management options in the face of uncertainty, and consist of a series of 

linked submodels (Figure 0.1).  The foundation of MSE is the operating model that controls the 

population and fishery dynamics in the system.  The operating model is run for an initial period 

of time (called the ​Base​ period here) that controls the historical population dynamics and fishing 

pressure, and allows for sufficient data to be generated in the observation model to be used in the 

different assessment / management options being explored in the MSE.  After the ​Base ​period, a 

given management approach is applied to set the target catch for the stock, which is then 

removed from the population.  This process is repeated at a fixed interval over a number of years 

in what is called the ​Feedback​ period (Figure 0.2).  In many MSEs, catch advice is based on a 

stock assessment model that estimates current abundance and management reference points.  In 

data-limited cases, or when an assessment model is rejected, the model output is not used, and 

catch advice is based on the available data required by a given data-limited approach.  Details of 

the operating model are provided in response to ToR 1, and the data-limited methods explored 

are provided in response to ToR 2 below.  Because the Northeast U.S. has a long time series of 

data from a fishery-independent survey, the IBMWG focused on methods that can utilize this 

index of abundance, and we broadly refer to these approaches as index-based methods, or IBMs.  
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TOR 1.  Develop methods to create data that if assessed 
with standard age-based approaches (e.g., VPA or ASAP) 
could exhibit a strong retrospective pattern. 

 

Operating Model 

 

We used the Woods Hole Assessment Model (WHAM; Stock and Miller, in review, 

Miller and Stock 2020; Appendix 4) as the operating model for the simulation study. WHAM is 

an R package and the general model is built using the Template Model Builder package 

(Kristensen et al. 2016). WHAM is a stock assessment model used to estimate parameters from 

real data, but it can also simulate data, including during a projection period, given a set of 

parameters and projection specifications. We used WHAM operating models to simulate data 

with known properties during the base period. Catches during the feedback period were 

iteratively updated based on an index-based assessment method (IBM) and harvest control rule 

that used the simulated observations to make catch advice during the projection period. We 

specified the initial base period to be 50 years, labeled 1970-2019, where the age-structured 

population and catch and index observations were simulated according to user supplied 

biological and fishery parameters for each scenario. The following period of 40 years, labeled 

2020-2059, normally viewed as a projection period in a WHAM assessment model, is here 

specified as a feedback period. From the beginning of the feedback period, an IBM was applied 

to generate catch advice for two year blocks, a typical catch specification timeframe for New 

England and Mid-Atlantic Council managed fisheries. WHAM used these catches, along with the 

user supplied biological and fishery data, to have the simulated population respond to the IBM.  

 

There were a few different assumptions that defined different operating model scenarios. 

First there were two different assumptions on history of fully-selected fishing mortality rates: 

1) 2.5 x Fmsy(based on M=0.2 and terminal selectivity) for the entire base period (ie., 

always overfishing) or 
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2) 2.5 x Fmsy for first half of base period and Fmsy for second half of base period (ie., 

overfishing the first half and then reduced to Fmsy for second half). 

Second, there were two different assumptions about variation in fishery selectivity:  

1) constant during the base and feedback period or 

2) a change in selectivity after the first half of the base period so that the age at 50% 

selectivity increased to 5 from approximately 3.7.  

Third, we considered two types of misspecification:  

1) an unknown change in natural mortality (M) or  

2) catch is underreported. 

 

The biological and fishery characteristics used in the simulations were derived from local 

groundfish stocks. The high level of fully-selected fishing mortality that we assumed for 

overfishing (F>Fmsy) was based on work by Wiedenmann et al. (2019) (Figure 1.1) looking at 

harvest rates relative to fishing mortality reference points for Northeast groundfish stocks. These 

two fishing intensities during the latter half of the base period lead to different starting conditions 

for each of the simulations.  

 

The two selectivity patterns are based on local groundfish fishery selectivity patterns. The 

changed selectivity pattern when two selectivity blocks occur reflects an increase in mesh size of 

the fishery to avoid younger fish (Table 1.1). 

 

The values we used to adjust natural mortality and unreported catch were derived by 

attempting to achieve a Mohn’s rho of approximately 0.5 for spawning stock biomass (SSB) 

when a statistical catch at age model configuration of WHAM was used to fit the simulated data 

(Table 1.2). We also fit the same SCAA configuration of WHAM to data without mis-specified 

M or catch to verify that retrospective patterns were not present on average (Figure 1.2). 

 

For the natural mortality misspecification, the true natural mortality used to simulate the 

population and observations changes from 0.2 to 0.32 (for fishing intensity history type 1) or 

0.36 (for fishing intensity history type 2) linearly between years 2000 and 2009 during the base 

period and remains at the higher level throughout the feedback period. The IBM uses the 
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observations and, those IBMs that require a natural mortality rate use the value (0.2) from before 

any change in natural mortality because the change in natural mortality is meant to be unknown. 

 

For the catch misspecification, a scalar multiple of the true catch observation is provided 

to the IBM. The scalar is 5 for fishing intensity history type 1 and both selectivity patterns, 2.25 

(for fishing intensity type 2 and a change in selectivity) or 2.5 (for fishing intensity type 2 and 

constant selectivity) linearly from year 2001 to 2010. Note that this scalar is applied only to the 

aggregate catch so that it affects all catches at age equally.  

 

We used the same set of 1,000 random seeds to initialize simulations for all scenarios. 

For every random seed, we applied each of the IBMs so that the base period is identical for each 

of them, but the population and observations during the feedback period vary by IBM due to the 

differences in catch advice provided by each of the IBMs (Figure 1.3).  

 

In all scenarios, when catch advice provided by the IBM, and increased due to catch 

misreporting when appropriate, was impossible to catch given the size of the stock at the time, 

we instead imposed a fully selected fishing mortality of 2. This prevented the population from 

going negative, as could have happened if the catch advice was simply subtracted from the 

population.  

 

All operating model scenarios assumed autoregressive deviations between the realized 

recruitment and that expected from a Beverton-Holt stock recruitment curve (Table 1.3). This 

stochasticity in recruitment is the only source of variation in the population for a given random 

seed. The initial numbers at age are specified at equilibrium values with total mortality defined 

by natural mortality in the first year, fishery selectivity in the terminal year of the base period, 

and corresponding Fmsy. Therefore, they are the same for all 1,000 seeds of a given scenario, but 

they differ between scenarios when there are differences in terminal year fishery selectivity. 

Consistent seeds were used across all the scenarios so that differences in performance among 

IBMs can be attributed to characteristics of the IBMs themselves and not different sequences of 

observation or process errors, and such standardization is considered best practice (Punt et al., 

2016). 
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There were a number of scenarios considered in a full factorial design as well as a 

number of additional scenarios denoted one-offs. The factors included in the full factorial design 

were: cause of the retrospective pattern, fishing history, fishery selectivity, IBM, and catch 

multiplier (Table 1.4). This resulted in a total of 2 x 2 x 2 = 8 operating models where 13 IBMs 

and 2 catch multipliers were applied during the feedback period resulting in 208 scenarios for 

each of the 1,000 random seeds. Several one-offs were considered (Table 1.5), however due to 

time limitations, only the no retrospective pattern and statistical catch at age model analyses 

could be conducted. The statistical catch at age model was configured and estimated using 

WHAM, but specified to closely match ASAP (Figure 1.4). The purpose of the extra analyses 

was to examine specific aspects of the simulations without requiring the full number of runs if 

they had been part of the full factorial design.  

 

Biological reference points 

 

We used the true values of the population and fishery to define biological reference 

points and associated metrics to evaluate IBM performance (Table 1.6). The MSY reference 

points were derived for each year during the base period using the fishery and biological 

characteristics of that year. This resulted in changes between the first and second halves of the 

base period due to changes in M and fishery selectivity in appropriate scenarios. Similar to the 

definition of initial numbers at age, the fully selected fishing mortality during the base period 

was based on Fmsy defined using M = 0.2 and the selectivity during the terminal years of the 

base period (Figure 1.5). For example, in scenarios with F history pattern = 2, fully selected 

fishing mortality begins at 2.5 times this Fmsy and reduces to this Fmsy value during the last 

portion of the base period. Since the changes in the second half of the base period were held at 

these values during the feedback period, the MSY reference points from the terminal year of the 

base period, including changes in M, were used for performance metrics in the analyses.  

 

This difference between the reference points used to set the fishing history and those to 

determine performance metrics led to some counterintuitive starting conditions. Specifically, the 

16 



large change in natural mortality required to achieve the desired retrospective pattern led to the 

fishing mortality ratio compared to the terminal year reference points being below (in some cases 

well below) one instead of equal to or well above one (Figure 1.5). This led to the SSB ratios 

being above one for F history scenarios of overfishing then Fmsy in the second half and SSB 

ratios equal or above one for F history scenarios of overfishing throughout (Figure 1.6). In 

contrast, the reference points associated with catch as the retrospective source had only minor 

changes due to fishery selectivity changes (Figure 1.7). Had we used the terminal year MSY 

reference points when setting the fishing mortality rate histories, the overfishing levels would 

have been so high as to collapse the population. So instead, we used the F histories from the 

catch retrospective scenarios directly in the M retrospective scenarios and recognize that the 

terms associated with the F histories do not necessarily apply for the M retrospective scenarios. 

The changes in MSY reference points associated with M as the retrospective source have 

consequences for the performance metrics computed for the feedback period and could impact 

the IBMs that rely on stationarity assumptions when deriving catch advice (such as knowing the 

M rate or being able to approximate the biomass reference point).  

 

Feedback period procedure 

 

Within the MSE process, the IBMs were conducted in the middle of the calendar year 

resulting in different years of information being available for different data inputs. Two surveys 

were conducted each year to produce an index of abundance, the first occurred 0.25 into the year 

(spring like survey) and the second at 0.75 of the year (fall like survey). The IBM method 

conducted in year y had the spring like survey in year y available to it as well as the fall like 

survey from year y-1 and the catch data from year y-1 (e.g., an assessment that occurred in 

summer 2014 would have the spring survey data from 2014, the fall survey data from 2013 and 

the catch from 2013). IBM methods that utilized only a single survey were provided with the 

average of the two surveys calculated as the mean of the spring survey in year y and the fall 

survey in year y-1. As no fall survey took place prior to year one, the first year of mean survey 

index was the mean of the spring survey in year two and the fall survey in year one 

approximating the index on January 1st of year two. IBM methods that evaluated the catch over 
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the mean survey index lined up the catch in year y with the survey in year y with survey in year y 

defined as the mean of the spring survey in year y+1 and the fall survey in year y (e.g. the total 

catch for the year 2018 would be lined up with the survey index approximated as Jan 1, 2019 

(mean of fall 2018 survey and spring 2019 survey)).  

 

Annual aggregate catch and index observations were assumed to be normal after 

log-transformation. The associated age composition observations were assumed to be 

multinomial distributed. Coefficients of variation and effective sample sizes are provided in 

Table 1.7.  
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TOR 2. Identify a number of index-based methods and a 
range of harvest control rules for use in closed-loop 
simulation, using index-based data resulting from ToR 1. 

A large number of data-limited methods exist for setting catch advice, and they vary 

widely in complexity, data inputs, and assumptions required (e.g., Carruthers and Hordyk, 2018). 

The northeast U.S. is a data rich region with a range of information available including the 

Northeast Fisheries Science Center (NEFSC) spring and fall coastwide bottom trawl surveys as 

well as historical catch data. As a result, the Index Based Methods Working Group (IBMWG) 

focused on a subset of data-limited methods known as index-based methods (IBMs) that utilize 

time series of fishery catch and CPUE from a survey or fishery, and omitted methods that require 

only catch data, snap shots of survey data or length data (e.g., constant catch methods or 

length-based methods). The IBMWG also omitted methods that required complete catch histories 

(from the inception of fishing), assumed an underlying surplus production population dynamics, 

or required assumptions about relative depletion. Complete catch histories are not available for 

stocks in the region, and surplus production Example methods that meet these criteria for 

omission include Depletion-Corrected Average Catch (DCAC; MacCall 2009), Depletion Based 

Stock Reduction Analysis (DB-SRA; Dick and MacCall 2011), and the Simple Method for 

Estimating MSY (SMSY; Martell and Froese 2012). The IBMWG also omitted methods that 

assume an underlying surplus production model where changes in productivity are driven solely 

by changes in biomass (e.g., Martell and Froese 2012). Changes in recruitment (Miller et al. 

2017; Xu et al. 2018; Tableau et al. 2019) or natural mortality (Pershing et al. 2015) for many 

stocks in the region violates this assumption, and surplus production fits to survey and catch data 

result in very different estimates of biomass over time compared to age-based assessments for 

many stocks in the region (Wiedenmann et al. 2019).  

 

Given the long time-series of trawl survey data, the group focused largely on survey 

IBMs. The relatively short timeline for the IBMWG restricted the total number of methods that 

could be evaluated to those that have been used or would be considered plausible for the 

Northeast Shelf. A list of methods currently used in the region is provided in Table 2.1, with 

thirteen IBMs selected by the IBMWG for evaluation. The IBMWG deliberately did not include 
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every approach to limit the overall number of methods explored, but also to allow for exploration 

of additional options not currently used but that have been explored or applied elsewhere. 

Although catch-curve analyses are not currently applied in the region, they were included here 

since age information is available for most of the stocks, and because Wiedenmann et al. (2019) 

showed they performed well in a retrospective application to groundfish stocks. We did not 

include length based methods to reduce the overall number of methods explored, and due to the 

availability of age based information. We also included two additional IBMs (Islope and Itarget) 

not currently used in the region, as these have been tested in other applications and shown 

promise (Geromont and Butterworth 2015a, 2015b, Carruthers et al. 2015, Wiedenmann et al. 

2019). An ensemble of models was also considered based on recent findings that improved 

performance can result from combining the results from multiple models (Anderson et al. 2017, 

Rosenberg et al. 2017, Spence et al. 2018, Stewart and Hicks 2018). The full range of methods 

included in this analysis are detailed below with equations provided in Table 2.2. Each method 

was examined for their ability to produce sustainable catch advice with data that would lead to 

large retrospective patterns.  

Methods that only use the survey index and catch  

 

Plan B smooth​ ​- The Plan B smooth approach has been used to set catch advice for Georges 

Bank cod since the rejection of the 2015 age-based assessment (NEFSC 2015, 2017, 2019). The 

Plan B approach combines the spring and fall surveys into an average index, then a LOESS 

smoother is applied to the average index (with a span = 0.3). The predicted LOESS smoothed 

values in the final three years are used in a log-linear regression to estimate the slope, and this 

slope (transformed back to the linear scale) is used to adjust the most recent three year average 

catch to generate catch advice (Table 2.2).  

 

Islope ​- The Islope method is similar to the Plan B smooth approach in that it uses recent trends 

in the combined average index (spring and fall) to adjust the recent average catch up or down. 

This general method was proposed by Geromont and Butterworth (2015a) and has been 

evaluated in a number of studies (e.g., Geromont and Butterworth 2015a, 2015b, Carruthers et al. 

2015, Wiedenmann et al. 2019). A log-linear regression is applied to the final five years of the 
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unsmoothed average index, and the slope is used to adjust a multiple (< 1) of the most recent five 

year averaged catch to generate catch advice (Table 2.1). Four formulations of Islope were 

proposed by Geromont and Butterworth (2015a), and we used the least conservative version here 

(version 1), although flexibility was incorporated to allow for exploration of the other versions. 

Key differences between Islope and Plan B smooth are the use of an unsmoothed average index, 

a longer recent time period (5 vs. 3 years), and a buffered catch (80% of the recent average in 

version 1; Table 2.2). 

 

Itarget​ -​ The Itarget method was proposed by Geromont and Butterworth (2015a), and has been 

evaluated in a number of studies (Geromont and Butterworth 2014, 2015, Carruthers et al. , 

Wiedenmann et al. 2019). Instead of using trends in the recent index, catch advice is determined 

by comparing the most recent five year average index to some target based on a reference period. 

The reference period does not change, and we used the last 25 years of the base period (years 

26-50) as our reference period. The target index of abundance is set to some multiple (≥ 1) of the 

average index value over the reference period, and the catch advice is based on the average catch 

over the reference period, adjusted up or down based on the recent five year average index 

relative to target index (Figure 2.1; Table 2.2). We combined the spring and fall surveys into an 

average index to use in the Itarget method. As with Islope, Geromont and Butterworth (2015a) 

proposed four formulations, and we used the least conservative option (version 1; Table 2.2). 

 

Skate method​ - The skate control rule method was developed by the New England Council's 

Skate Plan Development Team and endorsed by its Scientific and Statistical Committee to 

produce catch advice for the skate complex using only a time-series of catch and a survey index 

for each skate species (Skate FMP Amendment 3). A single time-series of the survey index is 

calculated as the mean of the fall and spring surveys. The median value of the annual catch 

divided by the annual index over the entire time series (except the most recent years) provides 

the relative fishing mortality to produce catch advice. A moving average smoother is applied to 

the catch and survey index prior to dividing the two. The relative fishing mortality times the 

terminal year of the smoothed survey index is the proposed catch advice. The entire time-series 

is used and there is no comparison to a pre-specified reference time period.  
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An Index Method (AIM)​ - AIM was developed by Dr. Paul Rago at the Northeast Fisheries 

Science Center (NEFSC 2002b) and the executable with GUI can be found in the NOAA 

Fisheries Toolbox (​https://nmfs-fish-tools.github.io/AIM/​). For the current project, the methods 

were implemented in R (comparisons were performed to confirm that the NFT program and the 

R implementation produce the same results; notation herin is consistent with that in the NFT 

program help files). The AIM model requires two inputs: an index of relative stock biomass and 

total catch in biomass, and seeks to identify a relationship between two calculated series: 

Replacement Ratio (​Ψ​) and Relative ​F​ (​F​REL​). ​Ψ ​ is calculated as a ratio of the survey index in a 

given year divided by a weighted average of user-defined survey values; for this application, the 

numerator of ​Ψ​ is the current index year and the denominator was the average of the previous 5 

years of the index. Assuming no density-dependence in the population dynamics, this time series 

of replacement ratio reflects changes in annual population biomass due to recruitment, growth, 

natural and fishing mortality. ​F​REL​ is the ratio of catch in a given year (y) to an average of recent 

index values (for this implementation, a 3 year average of the biomass index, centered on y, was 

used), and in principle reflects the relative magnitude of catches relative to average biomass; the 

catchability of the index is unknown so the scale of ​F​REL​ is not simply the proportion of biomass 

loss. The AIM model performs a regression of ln(​Ψ​) on ln(​F​REL​) to identify the value of ​F ​REL 

where ​Ψ​=1 (i.e. where ln(Ψ)=0, a level of fishing that allows replacement, which we’ll refer to as 

F​REL*​). Assuming the regression is satisfactory, and modeling assumptions are met, then the 

value of ​F​REL*​ is a relative fishing rate that allows the population biomass to replace itself. To 

arrive at an approximation of stable catch advice, ​F​REL* ​is multiplied by the most recent index 

value.  

 

Dynamic Linear Model (DLM)​ - ​The DLM is a state-space approach requiring an ​index of 

relative stock biomass and total catch in biomass​ to produce an estimated target catch level. For a 

single or multiple survey indices and a vector of catch data, the method fits a dynamic linear 

model on the log scale with at least two components: 1) a smoothly evolving mean abundance, 

and 2) a dynamic regression on catch. Because survey indices and catch time series are often 

strongly correlated, multicollinearity can cause difficulties in model fitting. However, this linear 

correlation represents redundant statistical information, a reflection of spawning stock biomass, 

contained in both time series. Therefore, the average relative exploitation rate is differenced out 
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of the catch time series using a linear regression between the log survey indices and the log catch 

to create a time series of catch anomalies. Essentially, the catch anomalies values reflect whether 

more or less catch occurred than one would expect given the survey indices and catch history. 

Catch is chosen to be modified because it is assumed that the survey indices represent a more 

reliable measure of stock abundance. If the survey indices and catch time series for a given stock 

were not correlated, this procedure would only de-mean the catch time series and thus not impact 

model fitting. To track the mean survey abundances in this simulation experiment, the method 

incorporates a dynamic linear trend. A dynamic linear trend is estimated by two state variables: 

1) an initial, static intercept at time 0, and 2) a random walk whose value is added to the intercept 

variable at each time t. The second state variable is therefore an estimate of the abundance trend 

in the survey, after the effect of catch is accounted for, at any point in time. This is advantageous 

in cases where population productivity is nonstationary (ex. ​M​ or recruits/spawner change over 

time) in that forecasts account for the recent trajectory of the population. Once the DLM is fit, 

the survey indices are projected forward in time with the estimated parameters and an 

optimization routine is used to determine the annual catch levels that would result in the 

reference biomass level on average. For this project, the biomass reference level was set as the 

75​th​ percentile of the survey indices and a 10-year rebuild to the reference level was desired. The 

first two years of catch advice returned by the optimization function is averaged with the catch 

levels in the two years prior to the forecast period in order to smooth out changes in harvest and 

produce a single value for catch advice. Notably, the quantification of forecast uncertainty and 

the ability to test different model structures was not employed due to the time constraints of the 

project. Additional options that could be explored in future work include testing different model 

structures and using the estimated forecast uncertainty to assess risk in setting different catch 

advice tailored to the stock of interest. Finally, the DLM structure could also be augmented with 

additional model components (e.g. other covariates, an autocorrelated component) and/or length 

or age information. 

Swept area biomass methods 

 

Expanded Survey Methods​ - Estimates of swept area biomass have been used to determine catch 

advice for a number of stocks in the region. The estimation of swept area biomass was 
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approximated by scaling the simulated spring and fall survey observations to units of biomass 

using their respective catchabilities. These “scaled-up” biomass indices were then averaged using 

the spring observation from year ​y​ and the fall observation in year ​y​-1, as is common practice. 

Catch advice was determined as the product of the averaged biomass index from the most recent 

year and one of four target exploitation rates based on: 1) ​F​40%​, from a Spawner Per Recruit 

analysis 2) the exploitation rate associated with stock replacement (F​REL* ​calculated as detailed 

above for the AIM method), 3) the target Fishing mortality set equal to the assumed natural 

mortality (​F​=​M​), and 4) the average of the relative F values, defined as catch divided by the 

“scaled-up” biomass indices, from the most recent three years. 

 

Catch curve methods​ - The catch curve methods explored by the working group utilized numbers 

at age of fully-selected fish in each survey to estimate total mortality (​Z​) using catch curve 

analysis. An aggregate abundance at age was calculated by summing across the most recent three 

years for a given survey to create a single numbers-at-age vector. The age class with the largest 

abundance at age in each survey is set to the age at full selection. Ages below the age at full 

selection are dropped, as is the plus group, and the remaining values are used in a log-linear 

regression to estimate ​Z ​in each survey (​Z​ = the inverse of the slope). An average ​Z​ across 

surveys was calculated, and used with the assumed M to calculate an average ​F ​(​Z​ = ​M​ + ​F​), 
which is used with the most recent catch estimate to estimate total biomass (Table 2.1). Target 

catch values are then set using a specified target ​F​, and we explored two options (​F​targ​ = the 

assumed ​M​, and ​F​targ​ = ​F​40% ​from a SPR analysis). It is possible for the estimated ​Z​ from the 

catch curve analysis to be quite low, and if Z ≤ M, it would result in nonsensical estimates of 

recent biomass because the recent ​F ​would be < 0 . As a result, we set a constraint such that ​Z​ = 

max​(​Z​, ​M​ + 0.05) so that the estimated recent ​F​ would never be < 0.05.  

 

Combination of methods 

 

Ensemble method​ - An ensemble approach was evaluated that determined catch advice as the 

median of the advice produced by other IBMs. Only eight of the twelve IBMs were included in 

the ensemble. Variants of the catch curve and expanded survey methods were excluded because 
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each variant is not independent of the others and including all of them would skew the 

performance of the ensemble towards these two general methods, effectively weighting these 

approaches more heavily than other IBMs. Ultimately, two variants of the expanded survey 

method were included because preliminary results suggested that their performance was distinct 

enough as to negate any concerns about unduly weighting the expanded survey method in the 

ensemble. The DLM method was excluded because it had relatively long computational times 

that would have prohibited any evaluation of an ensemble approach in the time available. The 

IBM methods included in the ensemble were: AIM, catch curve using ​F​40%​, expanded survey 

using ​F​40%​, expanded survey using the average relative ​F ​ values from the three most recent years, 

Islope, Itarget, Plan B smooth, and skate method. 

 

Traditional age-based assessment methods 

 

Statistical Catch-At-Age (SCAA)​ - An SCAA model and harvest control rule were used in 

simulations for a subset of operating model scenarios. The SCAA model was configured in the 

Woods Hole Assessment Model (WHAM). The correct CVs and effective sample sizes were 

assumed for all catch and index data in the SCAA model. No stock-recruit model was assumed 

and there were no random effects. Natural mortality was mis-specified at 0.2 for the scenarios 

where ​M​ changed. Mohn’s rho was calculated (7 year peels) for abundance at age for all model 

fits during the feedback period and used to retro-adjust abundance at age for projections (divided 

by one plus Mohn’s rho). Catch advice was determined by specifying ​F​ equal to 0.75 of the 

estimated ​F​40%​ (​M ​=0.2).  

 

Application of the methods 

 

Each of the methods produces a single target catch value that was fixed over a two year 

interval. If the methods are being applied in year ​y​, then target catches are set for years ​y​+1 and ​y 

+ 2 (denoted ). In practice, the timing of setting target catches in the region 

generally occurs in late summer or early fall in between the spring and fall surveys, and before 
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complete catch data are available. Therefore, in year ​y ​complete catch data are available through 

year ​y​-1, and survey data are available for the spring survey through year ​y​ and for the fall 

survey through year ​y​-1. In practice, the data-limited methods that have been applied have used 

an average of the spring and fall index and we followed that approach here. If a method for 

setting catches uses an average of spring and fall, the average index in year ​y,  includes the 

spring data in year ​y​ and the fall data in year ​y​-1:  

 .  

 

Control Rules 

 

Most IBMs do not have the ability to estimate a biomass reference point (e.g., ​B​MSY​), 

which made consideration of so called biomass-based harvest control rules that reduce ​F​ or catch 

in response to estimated changes in relative stock status impossible. Lack of clarity exists, 

however, on whether the catch advice from IBMs should be treated as an overfishing limit (OFL) 

or acceptable biological catch (ABC). OFLs are equated to the catch that would result from 

applying ​F​MSY​, whereas an ABC is a catch reduced from the OFL to account for scientific 

uncertainty. So, each IBM was evaluated using two “harvest control rules”: 1) the catch advice 

from a given IBM was applied directly and assumed to serve as a proxy for the catch associated 

with ​F​MSY ​, thereby being equated to an OFL (catch multiplier = 1), and 2) the catch advice from a 

given IBM was reduced by 25% to account for unspecified scientific uncertainty, thereby being 

equated to an ABC (catch multiplier = 0.75). Catches were reduced by 25% to approximate an 

ABC because using the catch associated with 0.75​F​MSY​ is a common default ABC control rule in 

the region. 
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TOR 3. Identify metrics from the index-based assessment results 

that could be used in evaluations of trade-offs in performance 

among harvest control rules and index-based methods. 

 

The IBMWG identified a broad range of metrics to use in evaluating trade-offs that are 

typical of similar simulations, such as in management strategy evaluations (Punt 2017). The 

metrics were chosen because they directly represent management or biological interests, or were 

of legislative relevance (e.g., overfishing and overfishing metrics related to Magnuson Stevens 

Act; MSA). The metrics fell into five categories: 1) catch, 2) variability in catch, 3) biomass of 

the target species, 4) fishing mortality, and 5) miscellaneous (e.g., ecosystem, legislative). 

Generally, each category corresponds to some fundamental objective typical of fisheries 

management, and tradeoffs among categories are likely to be of greatest interest (Tables 3.1-3.2). 

Metrics related to catch and variability in catch can also be considered reasonable proxies for 

economic metrics, such as profit or revenue, and societal metrics, such as stability in production, 

although the relationship between catch metrics and these societal and economic metrics may not 

be linear. Ecosystem and multi-species metrics were considered, but fell outside the Terms of 

Reference and time frame available. Thus, all the metrics had a single species focus. Ultimately, 

not all of the metrics discussed by the IBMWG were used in analyses See Table 3.2), and may be 

evaluated in future research. 

 

Some of the metrics within each of the categories are redundant and displayed similar 

tradeoffs. The redundancies were expected, but the IBMWG preferred to maintain a broader list 

to hopefully capture more metrics of specific interest to varied stakeholders, managers, and 

legislative matters. Thus, the IBMWG expects that the majority of tradeoffs and subsequent 

decisions will be made using a subset of available metrics.  

 

Performance metrics also varied as to whether they took a short-term (first 6 years of the 

projection period) vs a long-term (last 20 years of a 40 year projection period) perspective. The 

IBMWG felt this critical as tradeoffs among short and long-term objectives can be expected, but 

both are important to consider when comparing strategic performance of control rules.  
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Performance metrics could also be split into risk-based metrics that used probability 

statements (e.g., frequency of simulations over which something happens) vs quantity-based 

metrics (e.g., the value of spawning stock biomass relative to a reference point). Risk-based 

metrics are useful for summarizing and comparing scenarios because a single numeric value 

bounded by zero and one captures the space of the outcomes. However, these metrics are often 

more difficult to interpret as they require some acceptable tolerance level for the probability, 

which can be more challenging for managers to define explicitly. Quantity-based metrics tend to 

be more easily interpretable and tolerance levels more easy to discuss (but the IBMWG 

recognizes that explicit transparency about what is ‘enough’ from decision-makers is also 

commonly a challenge for these metrics too). However, quantity-based metrics must be reported 

as summary from simulations, and so choices need to be made when communicating them about 

how the values and range of values of outcomes across simulations are summarized (e.g. 

mean/median over simulations, vs median plus/minus some quantile interval, vs. some 

lower/upper quantile that reflects the preferred direction of the metric).  

 

Shorthand definitions for each metric were created for easier graphical displays used in 

addressing other Terms of Reference. These definitions are below (Table 3.1), but follow the 

convention that: “l” is long-term, “s” is short-term, “avg” is an average, “is” represents a metric 

recorded as a probability statement, “n” represents the number of years that a situation occurred 

during a time period, “less” represents a value being less than some reference point, "ge" 

represents a value being greater than or equal to some reference point, "gr" represents a value 

being greater than some reference point, “f” indicates a fishing mortality quantity, “ssb” and “b” 

are used interchangeably and indicate spawning stock biomass, “catch” is self evident, “dot” 

indicates a metric that compares realized fishing mortality to an equilibrium fishing mortality 

rate that would drive the stock to some given level of biomass (i.e., either 10% Bmsy or 

50%Bmsy), 01 or 1 indicate 10% of Bmsy, 05 or 5 indicate 50% Bmsy, msy indicates a 

maximum sustainable yield reference point (i.e., MSY, Fmsy, or Bmsy). 
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TOR 4. Evaluate the combinations of index-based methods and 

control rules using the metrics in ToR 3 to determine candidates for 

consideration by the Councils or other management authorities.  

Base and Sensitivity Runs 

 

There were 208 factorial combinations of IBMs and scenarios examined in the base runs, 

where the catch advice multiplier (1 or 0.75) was considered part of the scenario definition 

(Table 4.1). Most of these factorial combinations had the full 1,000 simulations produce results 

(Table 4.2). There were two IBMs with two scenarios that had individual simulations fail and the 

DLM had a much lower number of runs due to time limitations (it took significantly longer to 

run than all the other IBMs). 

 

There were two sets of sensitivity runs. The first applied an SCAA to four of the 

scenarios. The SCAA applied a rho-adjustment to account for the estimated retrospective pattern 

in each assessment of each simulation. This required considerable computing time, so only four 

scenarios were examined. The second sensitivity run removed all sources of retrospective pattern 

for two of the scenarios. All the IBMs, except DLM and SCAA due to time constraints, were 

applied to these scenarios.  

 

There were a total of 230,147 successful simulations produced. 

 

Linear Models 

 

The simulations generated a massive amount of results. Therefore, evaluating the 

performance of the IBMs using only graphical displays would be both time consuming and 

subjective. So linear models were conducted to help identify the most important elements of the 

study design that affected the performance of the IBMs, an approach that has been used in 

management strategy evaluations (Punt et al., 2008; Fay et al., 2011). The objective for the linear 
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models was to supplement the graphical displays and help focus additional analyses. So while 

some consideration was given to the validity of the linear models, a thorough evaluation of their 

assumptions and statistical rigor was not conducted.  

 

A linear model was conducted independently for each of the metrics (TOR 3). Metrics 

recorded as frequencies or proportions were arcsine square root transformed, while all other 

metrics were log transformed (Punt et al., 2008; Fay et al., 2011), . Explanatory 

variables included source of the retrospective error, , fishing history, , number 

of selectivity blocks, , index based method, , multiplier on the catch 

advice, , and all two-way interactions: 

 

  

 

where  is the overall intercept. Results were summarized by creating a table noting 

which explanatory variables were significant for each metric at the 0.05 level, Sig, or not, NS. 

The proportion of times an explanatory variable was significant among metrics grouped by 

spawning stock biomass, fishing mortality, or catch, was reported. 

 

The explanatory variables , , , and the two-way interactions 

between  and  , and  and were significant for all metrics (Table 

4.3). The interaction of  and  was also significant for the vast majority of 

metrics. The interaction of  and  was consistently significant for long-term 

metrics and metrics related to catch.  was significant for a majority of metrics, most 

consistently for short-term spawning stock biomass and catch metrics. The interaction between 

 and  was significant for a majority of metrics with no discernible difference 

between long- and short-term metrics. The  variable was significant for the 

majority of the spawning stock biomass metrics and all but one of the catch metrics. The 

remaining explanatory variables were generally significant for less than half of metrics. Given 

these results, greater emphasis was placed on understanding the effects of , , and 
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 because these variables were the most consistently significant relative to the other 

variables. 

 

Scoring  

 

The mean value of each performance metric for all IBMs was computed across the 1,000 

simulations of the 16 scenarios. Since some metrics are better when values are larger and others 

are better when values are smaller, these mean values cannot easily be combined. So metrics 

where smaller values were better were multiplied by negative 1 to create a set of values where 

bigger is better (Table 4.4). This mean and adjustment approach to make bigger values better 

was also applied to the SCAA scenarios (Table 4.5, more detail about SCAA scenarios provided 

below). 

 

Scores were generated from these values in two ways. The first was simply ranking them 

giving the largest value the number of IBMs considered, the smallest value the number 1, and 

integer values in between (except in the case of ties). The second was to subtract the mean and 

divide by the standard deviation of each metric across all the IBMs. Both approaches result in 

scores where bigger values are better for each metric and can be easily summed across selected 

metrics to determine which IBMs perform best relative to those metrics.  

 

Two examples sets of metrics are provided here to demonstrate that the ordering of the 

IBMs depends strongly on the metrics selected. The first set of metrics contains the mean ratios 

of SSB, F, and catch to their respective MSY reference points in the long term (Figure 4.1). The 

second set of metrics contains the interannual variability in catch across the entire feedback 

period and the short term mean catch/MSY (Figure 4.2). These sets of metrics produce different 

orderings of the IBMs. For example, both catch curve (CC) IBMs score highly using the first set 

of metrics, while these IBMs score poorly using the second set of metrics. A number of 

additional sets of metrics are provided in Appendix 6 to demonstrate the changes in IBM 

ordering when different metrics are selected. 
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To allow users to easily evaluate a large number of sets of metrics, an R Shiny app was 

developed (see the ​scorer_app folder​ in the GitHub repository). This R Shiny app can be copied 

to a local machine and run to examine the Rank and Resid scores for whatever combination of 

metrics is desired. The sensitivity runs, denoted noretro and scaa in the app, are also available in 

the R Shiny app. The app was created because specific metrics were not provided as the basis for 

determining performance of the IBMs. The app allows users to pick among the 50 metrics to see 

how the IBMs performed relative to each other. 

 

Ratios of MSY reference points 

 

The ratio of the mean SSB, F, or catch to its respective MSY reference point showed 

differences among the IBMs by scenarios, with some factors having larger impact than others. 

Figures 4.3-4.5 show the mean SSB, F, and catch ratios in the long term (i.e., final 20 years), 

respectively, while Figures 4.6-4.8 show the ratios in the short term (ie., first six years). All six 

figures have the IBMs sorted so that the best (largest SSB and catch ratios, smallest F ratios) are 

at the top based on the mean across all 16 scenarios. The plots show similar patterns for 1 or 2 

selectivity blocks in both the short and long term. The plots also generally show similar patterns 

for fishing histories in the long term, but there are differences in the short term, as expected due 

to the different starting conditions. The catch multiplier often had the expected effect of reducing 

catch in the short term, but could sometimes result in higher average catch in the long term due 

to the larger SSB and lower F. The retrospective source had a large impact on the ordering of the 

IBMs, with groups of IBMs having either high or low performance for either catch or M, but 

rarely both. One group of IBMs contains the CC-FSPR, CC-FM, DLM, PlanB, ES-Frecent, and 

Islope which performed well in terms of both SSB and F in both the short and long term, while 

the other group contains Skate, AIM, ES-Fstable, ES-FSPR, ES-FM, Ensemble, and Itarget 

which performed well in terms of catch in both the short and long term. In the long term, the 

SSB ratio was above 1 for the M retrospective source for all IBMs, while the catch retrospective 

source depended on IBM group as to whether it was above 1 or not. The IBM group that 

performed well for SSB ratios was able to rebuild the stock above SSBmsy on average in the 

long term, while the other IBM group was not. Thus, if a stock is thought to be in poor condition, 
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the IBMs in the group that performed well in terms of rebuilding would be preferred to the IBMs 

in the other group. 

 

The distribution of 16 scenarios by IBM or 13 IBMs by scenario can be used to 

summarize the metrics. For example, the short and long term SSB/SSBmsy distributions are 

shown in Figures 4.9-1.10. Similar figures for all the metrics are available in Appendix 6. These 

plots show the groupings of IBMs and influence of different scenarios on those groupings, but in 

a more concise way than the 8 panel plots. This allows all the metrics to be presented in 

Appendix 6. 

 

The distributions of mean values do not express the full range of results, however. When 

all the simulations are plotted, there is clearly a wide range for each ratio, indicating that 

performance for a particular series of environmental conditions, expressed through recruitment 

deviations, can vary widely. For example, Figure 4.11 shows the SSB/SSBmsy and catch/MSY 

relationship for scenario CF1A (ie., catch retrospective source, Fmsy in second half of base 

period, constant selectivity block, and catch multiplier equal to 1.0) in the long term for the 1,000 

simulations. Note the plots for the remaining 15 scenarios as well as the equivalent short term 

plots are available in Appendix 6. The long and short term relationships can also be visualized 

through bagplots (Rousseeuw et al. 1999). For example, Figure 4.12 shows both the long term 

and short term SSB/SSBmsy and catch/MSY for scenario CF1A. The full set of bagplots are 

available in Appendix 6. 

 

The same groups of IBMs as noted above display different patterns in the relationship 

between the SSB and catch ratios in both the plots showing all the simulations and the bagplots. 

While all IBMs have large ranges for both ratios, Skate, AIM, ES-Fstable, ES-FSPR, ES-FM, 

Ensemble, and Itarget have nearly linear relationship while CC-FSPR, CC-FM, DLM, PlanB, 

ES-Frecent, and Islope have a much more diffuse relationship. This pattern by IBM group is 

consistent across the different scenarios. These linear or diffuse relationships have implications 

for the trade-offs among IBMs, with linear relationships having higher certainty of performance 

but lower population sizes on average. The more diffuse relationships can also result in situations 
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where the population is quite high but the catch is low relative to MSY, meaning the F is quite 

low.  

 

Examination of the simulation plots in Appendix 6 also demonstrates some of the 

changes in results by the factors. For example, toggling between Figure A6.39 and A6.40 (A vs 

R catch advice multipliers) shows that reducing the catch advice has a big impact on the vertical 

distribution of the diffuse relationship IBMs (much lower for R than A), while the linear 

relationship IBMs don't change as much but do appear to move a little to the right and maybe 

even up. This might occur because the diffuse relationship IBMs with reduced catch multipliers 

are seeing a population bouncing around an average value, meaning catch advice should be about 

the same, but the catch advice multiplier of 0.75 keeps reducing it. 

 

Another way to explore the impact of the factors is to make so-called “confetti plots” 

where the mean value of a metric is shown for each IBM and scenario combination but the points 

are colored by the factor. For example, Figure 4.12 shows the mean value from the 1,000 

simulations for six SSB metrics for the 208 combinations of IBM and scenario with the color of 

the point determined by the retrospective source. Here the differences are clearly seen between 

catch and M as the retrospective source for most of the metrics. In contrast, the same plot except 

the points are colored by the fishing history during the base period shows much more 

interspersed results (Figure 4.13). The full set of “confetti plots” by metric and factor are 

provided in Appendix 6.  

 

Risk issues 

 

The average SSB and F relative to their MSY reference points are indicative of the 

expected status of population under different combinations of IBM and scenario, but other 

metrics can also be used to examine risk. Specifically, the “_is_” metrics can be used to examine 

the probability that an event will occur at least once during the period. For example, the average 

value of the SSB metric l_is_less_05_bmsy from the 1,000 simulations provides the probability 

that the SSB falls below half SSBmsy, meaning the stock would be declared overfished, at least 
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once during during the last 20 years of the simulation. Similarly, the average value of the F 

metric l_is_gr_fmsy from the 1,000 simulations provides the probability that the F falls above 

Fmsy, meaning the stock would be declared undergoing overfishing, at least once during the last 

20 years of the simulation. The number of times that overfished or overfishing status happened 

can be found using the associated “_n_” metrics. This allows consideration of how often such an 

event happened on average. The use of the “avg” metrics of SSB and F relative to their MSY 

reference points then includes the magnitude of the difference as well, but not the number of 

years. Consideration of the metrics together allows for a more complete understanding of the 

performance of the IBMs across scenarios than using only a single metric. These results can be 

seen in the R Shiny app as well as through a number of different plots in Appendix 6. The IBMs 

that have the diffuse relationship between SSB/SSBmsy and catch/MSY performed better than 

the IBMs that have the linear relationship for these metrics. 

 

Catch stability 

 

While overfished and overfishing status are regulatory issues, there are other aspects of 

performance that may be of interest to managers. One commonly mentioned is the stability of 

catch advice. This was explored in these simulations through the use of the “_iav_” metrics for 

catch. The interannual variability tries to distinguish between an IBM and scenario combination 

that has little change from one assessment to the next compared to an IBM and scenario that 

fluctuates wildly from one assessment to the next, even if they have the same mean value. These 

results can be seen in the R Shiny app as well as through a number of different plots in Appendix 

6. Generally, the IBMs that have the diffuse relationship between SSB/SSBmsy and catch/MSY 

performed better with lower catch variability than the IBMs that have the linear relationship for 

this metric. The exceptions to this general rule are the two CC methods, which performed poorly 

according to this metric. 

 

Ensemble 
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By design, the Ensemble model generally had performance that fell in the middle of the 

orderings for metrics. It had an equal number of IBMs from the two groups (diffuse or linear 

relationships) of IBMs. This resulted in having an overall performance more similar to the IBMs 

with the linear relationship because the variability in the diffuse relationship IBMs could offset 

each other. The Ensemble did perform better than the other linear relationship IBMs in terms of 

catch stability, as would be expected. So there could be benefits to using an Ensemble approach 

if managers are interested in trying to trade off the benefits from both types of IBMs, although it 

generally followed the results of the linear relationship IBMs so the amount of trade off is 

limited in these simulation results. The performance of the Ensemble can be seen in the R Shiny 

app as well as through a number of different plots in Appendix 6. 

 

No Retrospective 

 

The no retrospective sensitivity analysis consists of the scenarios CF1A, CO1A, MF1A, 

MO1A, NF1A, and NO1A for all the IBMs except DLM. The performance of IBMs did not 

always improve when there was no source of retrospective error. Some of this was due to the fact 

that the starting conditions were different from the M retrospective source due to the changing 

reference points for the latter scenarios. In the long term, the average SSB/SSBmsy and 

catch/MSY were generally closer to 1.0 than either the catch or M retrospective sources (Figure 

4.14). This demonstrates a weakness with the scoring algorithm used in this study, values well 

above SSB or MSY reference points are scored higher than values close to the reference points. 

This could be taken into account by developing alternative algorithms for deriving the score, 

such as mean distance from the reference point with a penalty for being on the bad side of the 

reference point. This would require additional input from managers about their preferences, so 

was not pursued in this study, but could be done in future analyses. 

 

Despite the shortcomings of the scoring algorithms, there was some change in the 

ordering of the IBMs when only the no retrospective scenarios were considered, but generally 

the same groupings held as were seen in the base analyses. See Appendix 6 for some sample 
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scores using the noretro set and the scorer app to create additional results using other sets of 

metrics. 

 

The performance of the IBMs when no retrospective source is present can perhaps be 

most clearly seen in the equivalent of Figures 4.3-4.8, where the points represent the mean values 

from the 1,000 simulations for each IBM and scenario (see Appendix 6). Note that due to the 

limited number of scenarios, there are fewer panels in these plots. The long term SSB/SSBmsy 

for the no retrospective source showed generally good performance among IBMs, although the 

Skate, AIM, and ES-Fstable methods resulted in a mean value below 0.5 for the fishing history 

of overfishing throughout the base period. Surprisingly, the long term F/Fmsy mean values were 

above 1.0 for all the IBMs in the no retrospective source scenarios. This may be due to the 

averaging across years and the fact that F could go well above Fmsy, but was limited at 0 in how 

far below Fmsy it could go. Despite the high mean values of F/Fmsy, the no retrospective source 

performed better than the catch retrospective source for nearly all IBMs. The M source 

performed better than the no retrospective source for F/Fmsy, but this is most likely due to the 

high Fmsy values associated with the increased M rate. The long term catch/MSY for the no 

retrospective source did not have any of the very low values seen for some of the IBMs in the 

catch retrospective source, and did generally similar to the M retrospective source despite having 

much higher MSY values. The three short term plots demonstrate the importance of the starting 

conditions as the fishing history scenarios were often quite different.  

 

The 1,000 point plots for the no retrospective source scenarios were not that different 

from the associated catch and natural mortality retrospective source. The diffuse patterns tended 

to be less so, and the linear patterns were moved so that they more closely intersected the (1,1) 

point. These plots are provided in Appendix 6, along with a large number of plots similar to 

those from the base scenarios. 

  

SCAA 
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The SCAA sensitivity analysis used scenarios CF1A, CO1A, MF1A, and MO1A. Note, 

the no retrospective source scenarios were not included due to time limitations. The SCAA 

model performed better than all the IBMs when the long term SSB, F, and catch relative to their 

MSY reference points was used as the scoring metric (Figure 4.16). While the superior 

performance of the SCAA model held for many metrics, it did not hold for them all. For 

example, the set of metrics containing the interannual variability during the entire feedback 

period and the short term catch/MSY had SCAA in the lower half of the IBMs order (Figure 

4.17).  

 

The performance of the SCAA model can perhaps be most clearly seen in the equivalent 

of Figures 4.3-4.8, where the points represent the mean values from the 1,000 simulations for 

each IBM and scenario (see Appendix 6). In the long term, the SCAA model performed near the 

top of the ordered list, with no IBM consistently performing better than it. In the short term, the 

SCAA model’s performance varied by the fishing history, with some metrics doing well for one 

fishing history but not the other, leading to a middling performance across these three metrics.  

 

The SCAA model had a near linear relationship between the SSB/SSBmsy and 

catch/MSY points, with better performance for the M than catch retrospective source (Figure 

4.18). The full suite of 1,000 point plots for the SCAA scenarios are available in Appendix 6 

(pages 27-62 in tables_figures_scaa.pdf in the tables_figs folder). The SCAA performed with 

respect to long term probability of the stock being overfished or undergoing overfishing 

compared to the IBMs (Figure 4.19). The full suite of figures for the SCAA sensitivity analysis is 

available in Appendix 6. 

  

Candidates for consideration 

 

Overall, none of the IBMs considered in these simulations performed better than the 

rho-adjusted SCAA model. So in situations where an SCAA model is rejected due to a strong 

retrospective pattern, there should not be an expectation that an index based method will perform 

better than the rejected model. These simulations were by necessity limited in scope, so it is not 
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clear that this will always be the case, especially if the retrospective pattern is much larger than 

examined in this study. 

 

There were two groups of IBMs that performed similarly. In situations where the stock is 

felt to be in poor condition, CC-FSPR, CC-FM, DLM, PlanB, ES-Frecent, and Islope should be 

candidates for consideration because they had better performance rebuilding an overfished stock. 

In situations where the stock is felt to be in good condition, Skate, AIM, ES-Fstable, ES-FSPR, 

ES-FM, Ensemble, and Itarget should be candidates for consideration because they had higher 

short term catch.  
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TOR 5. Provide guidance on specific situations that are and 
are not well-suited for a particular control rule or index-based 
method identified in ToR 4. 

 

ANOVA for evaluating sensitivity of IBMs to simulation factors 

For each iteration of each IBM in the simulation, the performance metrics of SSB, F, and 

catch relative to their true MSY values from the OM were calculated. Short- and long-term 

metrics were summarized over a number of years for SSB/SSBMSY, F/FMSY, and Catch/MSY: 

the average of each metric over the first 6 years of the projection period (short-term) and the 

average over the last 20 years of the projection (long-term). The variability among these metrics 

was analyzed in an ANOVA to determine which factors in the simulation explained the greatest 

proportion of total variance by IBM. Simulation factors evaluated were: retro_type (catch or M), 

Fhist (always overfishing or overfishing followed by F=F​MSY​), n_selblocks (1 or 2 fishery 

selectivity blocks), catch.mult (multiplier of 1.0 or 0.75 on 2-year catch advice), time.avg 

(whether the metric was short- or long-term). The following interactions were also included in 

the analysis: Fhist:time.avg, retro_type:Fhist, retro_type:catch.mult, retro_type:time.avg, 

catch.mult:time.avg, and Fhist:catch.mult. Factors explaining a large proportion of total variance 

are interpreted as something that the metric for a particular IBM is sensitive to, while factors 

explaining relatively small fractions of the total variance are interpreted as factors that a metric 

for a particular IBM is relatively insensitive to. This approach is similar to explorations of 

reference point sensitivity to biological parameters in Brooks et al. (2008). 

Before performing the ANOVA, the distributions of the metrics were evaluated for 

normality. The data were found to be quite skewed, and a square root transformation generally 

performed better than the natural logarithm transformation in reducing skewness, so all values 

were square-root transformed (see distributions of data with and without transforms and qq plots 

of residuals to the fitted linear models in Appendix 6). For the transformed data, all of the above 

listed factors and 2-way interactions were evaluated in separate ANOVAs for each IBM for each 
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of the 3 metrics. The ANOVA was done separately for each IBM so that differences in 

performance across methods could be summarized. The value in each table reflects the 

proportion of total variance explained by that factor, and the final row is the total fraction 

explained by those factors. “NA” indicates a non-significant factor.  

The proportion of total variance explained by each factor is reported in Tables 5.1 – 5.3 

for SSB/SSB​MSY​, F/F​MSY​, and catch/MSY. Most factors were significant at the 0.01 or 0.001 level 

for all 3 metrics, though some of those explained less than 1% of the variability. The two factors 

explaining the most for SSB/SSB​MSY​ and F/F​MSY​ were retro_source and time.avg, while for 

Catch/MSY time.avg explained the most followed by catch.mult and Fhist.  

Sensitivity of IBMs to the different factors tended to fall out in two distinct groups for the 

SSB/SSB​MSY​ and F/F​MSY​ metrics. Specifically, DLM, PlanB, ES-Frecent and Islope were 

relatively insensitive to the cause of the retrospective (retro_type) and variability in their metrics 

were primarily explained by whether the value reflected a short- versus long-term average 

(time.avg). IBMs most sensitive to the cause of the retrospective were Itarget, Skate, AIM, 

ES-FSPR, ES-FM, ES-FStable, and the Ensemble. The two catch curve methods (CC-FSPR and 

CC-FM) were intermediate to these two IBM groupings. 

Catch/MSY variability was largely explained by whether the value was a short- or 

long-term average (time.avg) for all IBMs but Itarget and the two catch curves. After the factor 

time.avg, the same two IBM groupings identified for SSB/SSB​MSY​ and F/F​MSY​ held: Islope, 

ES-Frecent, PlanB and DLM had the catch multiplier as the second most important factor, while 

Itarget, Skate, AIM, ES-FSPR, ES-FM, ES-FStable, and the Ensemble had the interaction 

retro_type:time.avg and Fhist:time.avg as the second or third most important factor.  

  

Conclusions on suitability of IBMs for different scenarios: 

1. For several IBMs, the variability among metrics was primarily due to the factor related to 
the cause of the retrospective pattern (retro_type). Thus, if you cannot identify the likely 
(or dominant) source of a retrospective pattern (catch or M), then using an IBM sensitive 
to the retrospective source would be risky to the stock and fishery, and this risk could be 
avoided by using a method robust to this uncertainty. In this regard, the following 
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methods were more robust to retro type: DLM, PlanB, ES-Frecent, Islope, and to some 
extent the two catch curve methods. We anticipate these methods would have more 
robust performance in situations where a retrospective pattern exists similar to that 
simulated in this project.  

2. DLM variability in SSB/SSBMSY and Catch/MSY is mostly explained by short vs long 
term means; this is not surprising since the method aimed to rebuild in 10 years, which is 
longer than the cut-off for short-term metrics; catch multiplier followed by retro_type 
were the other main explanatory terms. 

3. PlanB, ES-Frecent, and Islope had similar results to the DLM IBM. PlanB and Islope are 
similar (use slopes to adjust catch advice), but simpler, methodologically, so this result is 
not surprising.  

4. The ES-Frecent IBM generally performed well, and differently from the other ES 
methods. This is due to the survey catchability coefficient canceling out in the application 
of catch advice. The catch advice is derived as Frecent times the expanded survey. Since 
Frecent is calculated as catch/expanded survey, the effect of the survey catchability is 
essentially removed. So this method will generally keep the stock at the current fishing 
mortality rate, although uncertainty in the survey and catch observations can cause it to 
change. The other ES methods would be expected to depend strongly on the survey 
catchability estimate. Future research could explore how the ES methods perform with 
uncertainty and/or bias in the catchability estimate. 

5. Different sensitivity of IBMs to the different simulation factors could be useful for 
exploring future ensemble composition. Based on the scenarios explored herein, future 
analyses could consider combining the two catch curve methods with the four IBMs that 
were insensitive to the source of retrospective pattern for comparison with the results 
from the current Ensemble to see if an overall improvement (consistent rebuilding, higher 
and less variable catch) is achieved. 

  

Heatmaps for identifying similar performance of median performance 

metrics 

Results from the ANOVAs highlighted which factors explained variability in IBM 

performance, and served as the basis for data subsetting and generation of heatmaps that show 

groupings of IBMs that exhibit similar performance across the factor groupings. The heatmaps 

were produced by the function heatmap.2 in the package ​gplots​ (Warnes et al. 2020).  
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As with the ANOVA analyses, X/X​MSY​ metrics for each iteration of each IBM in the 

simulation, were summarized over short- and long-term time periods. At the highest level of 

aggregation, medians by IBM were calculated across all simulations (13 categories (IBMs) with 

16,000 values per IBM if all iterations were conducted and/or converged). More granular 

analyses calculated medians by IBM and single factor (26 categories with 8,000 values for 

complete cases) and then medians by IBM and 2-way factors (52 categories with 4,000 values 

for complete cases). 

In the heatmap.2 function, the median values for all 3 metrics are first normalized so that 

values are on the same scale. Dissimilarities are calculated across the categories and 

dendrograms reorder the categories. In the heatmaps for this analysis, categories are the factors 

into which all of the data were subsetted (13 IBMs, or 26 IBMxFactor, or 52 

IBMxFactor1xFactor2). In the top left of each heatmap, a key indicates the colors that 

distinguish where the normalized score falls within the distribution, and a superimposed cyan 

histogram within that key indicates how the data were distributed over the normalized 

distribution. The title of each heatmap indicates the subsetting of the data, and the right-side 

y-axis gives the IBM x Factor category for the median value of the metric in that row. The rows 

are arranged by the dendrogram on the left-side y-axis, and the color in each cell of the heatmap 

corresponds to the normalized metric and matches the colors in the key at the top left of the 

heatmap. Comparing the contrasting colors within a given row shows trade-offs between 

achieving a higher median SSB/SSBMSY (value >1 indicates rebuilding was achieved) versus 

the fraction of MSY that could be caught; similarly, the F/FMSY median indicates whether 

overfishing occurred more or less than 50% of the time (values >1 indicate overfishing). A table 

of the median performance metric values was produced for each heatmap, and the row order in 

the tables matches the right-hand side y-axis labels in the Figures to facilitate easier association 

between the figure and corresponding table. 

The median X/Xmsy metric by IBM indicates that >50% of iterations achieved rebuilding 

(SSB/SSB​MSY​ > 1) for CC-FSPR and CC-FM, DLM, PlanB, ES-Frecent and Islope, in order of 

greatest median SSB/SSB​MSY​ (Figure 5.1 and Table 5.4). This is seen on the heatmap as the 

block in the SSB column with the darkest red shading. These same methods avoided overfishing 

in >50% of iterations (F/F​MSY​ was 0.31-0.87). The trade-off for rebuilding and avoiding 
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overfishing is seen by the corresponding lighter color blocks in the Catch column, however 

among the IBMs achieving rebuilding >50% of the time, PlanB, ES-Frecent, and Islope achieved 

median catch that was 65-70%, respectively, of MSY. By contrast, the Skate, AIM, ES-FStable 

had median SSB/SSBMSY of 0.53-0.7, while median catch was > MSY.  

The heatmap for median performance metrics by IBM and retrospective source indicates 

that rebuilding was more successful when the retrospective source was M rather than catch 

(Figure 5.2 and Table 5.5). Scenarios where rebuilding was not achieved at least 50% of the time 

were all in cases where catch was the retrospective source for the IBMs Skate, ES-FM, 

ES-FSPR, AIM, ES-Fstable, Ensemble, and Itarget. Several IBMs that achieved at least 50% 

rebuilding also achieved catch that was greater than MSY: ES-FSPR, ES-FM, ES-FStable, AIM, 

and Skate. Partitioning the results by retrospective source helped identify that methods that 

performed poorly at the overall IBM level (AIM and Skate) actually can have good performance 

for some of the scenarios. This finding is consistent with the ANOVA, which identified that the 

largest source of variability in metrics for AIM and Skate was the retrospective source. 

The factor for retrospective source explained a lot of variability in some IBMs, while in 

others, the time horizon of metric summary explained the most. The heatmap for median 

performance by IBM and time horizon not unexpectedly shows that the greatest rebuilding is 

achieved in the long-term (Figure 5.3 and Table 5.6). However for the methods PlanB, DLM, 

Islope and ES-Frecent, as well as the two catch curves, median rebuilding was greater than 1 

even in the short-term (slightly greater for some of these), while long-term median metrics were 

greater than 2. This factor explained the greatest amount of variability in the metrics for these 

IBMs. For these same IBMs, catch in the short-term was greater than long-term catch.  

When median metrics for IBMs and catch multipliers are analyzed, rebuilding probability 

was greatestest when the catch advice was scaled by 0.75 rather than no scaling–and as a result, 

median catch was far below MSY (Figure 5.4 and Table 5.7).  

Median metrics for IBM by Fhistory (1=always overfishing then F=F​MSY​, 2=always 

overfishing) reveal that higher median SSB/SSBMSY is achieved by Fhistory=1 rather than 2, 

although for the IBMs PlanB, DLM, Islope, and Frecent rebuilding is achieved at least 50% of 
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the time under either Fhistory (Figure 5.5 and Table 5.8). The two catch curves were insensitive 

to this for the SSB metric but median catch was nearly double when Fhistory=1 rather than 2.  

Heatmaps for median metrics by IBM and 2 factors were also examined, and the figures 

and corresponding tables can be found in Appendix 6. This finer granularity of data subsetting 

did not alter the bigger picture result that a subset of IBMs consistently outperformed others 

(PlanB, DLM, Islope, ES-Frecent and the two-catch curve methods).  

  

Conclusions: 

1. Looking at IBM performance across all iterations, rebuilding was greatest for the IBMs 
that were the least sensitive to source of the retrospective pattern (CC-FSPR and CC-FM, 
DLM, PlanB, ES-Frecent and Islope). DLM, PlanB, and CC-FM and CC-FSPR achieved 
the greatest median SSB/SSB​MSY​, but catch was lowest for CC-FSPR and CC-FM. PlanB, 
Islope and ES-Frecent had the highest median catch among the methods that achieved 
rebuilding more than 50% of the time.  

2. The IBMs ES-FSPR, ES-FM, Skate, Ensemble, ES-Fstable, AIM, and Itarget on the 
whole had less success rebuilding, though it depended on the scenario. If the 
retrospective source was M, some of these achieved median rebuilding. 

3. The Ensemble method slightly underperformed at rebuilding, with median SSB/SSBMSY 
of 0.92, but 90% of MSY was attained for median catch. As the ensemble included 
several of the IBMs that did not achieve rebuilding, the median in the ensemble was 
weakened by their inclusion. Future research could look at optimizing ensemble 
composition based on the performance in scenarios most similar to that expected in a 
given assessment setting. 

4. Trade-offs in risk (overfishing and rebuilding) and rewards (catch) are inherent in 
management decisions. Balancing median catch close to MSY in the short-term while 
still maintaining a probability of at least 50% of achieving rebuilding was possible for the 
ES-Frecent, PlanB, DLM, and Islope, although long-term median catch with these 
methods was far below MSY. This could indicate that these four methods are appropriate 
short-term models for management advice, but while they are employed other efforts 
should be invested to return to an age-based model.  

  

45 



Caveats  

Although a large number of IBMs, scenarios, and simulations were conducted, there are 

always limits to the scope of simulation studies. These caveats should be kept in mind as the 

results of this study are applied in other situations. The biological and fishery characteristics used 

in this study were based on local groundfish parameters and other life histories or fishing 

histories may show different performance for the IBMs. This framework is well-suited to 

application of other biological and fishery characteristics and should be used in the future to do 

so.  

There was only a single source causing the retrospective patterns in the age-based data 

that remained at the same magnitude throughout the feedback period in these simulations. Recent 

experience in the region has demonstrated this is not how retrospective patterns typically behave, 

they either increase or decrease in magnitude over successive assessments. While the framework 

is currently not formulated to handle such a situation of changes in the forcing function for the 

retrospective pattern, it could be modified to do so with relative ease. This is an area for future 

research. The framework is well suited to handle either multiple sources of retrospective patterns 

or different magnitudes of retrospective patterns (with constant forcing functions). These issues 

should be explored in the future using the framework. 

The simulations applied the IBMs every other year in the feedback period to mimic the 

common use of index-based methods in the region. The IBMs are generally easy to apply with 

little tuning needed, so could be applied every year. However, this would create a burden on the 

management process that would need to be considered before actual application. Large 

improvements in performance would need to be demonstrated to justify this additional 

management cost. The reliance of the IBMs on the surveys means that missing years in the time 

series can have larger impacts than in age-based models. The impact of missing surveys could be 

examined through this framework by occasionally using the catch advice for 3 years and 

delaying an assessment. The framework is well-suited to explore this issue, but it was not 

considered in this study due to time limitations. 

 Due to the nature of closed-loop simulations, the IBMs had to be applied formulaically 

with no ability to modify the IBM formulation to a specific set of observations. This is not how 
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actual index-based assessments are conducted. Whoever is conducting a real index-based 

assessment will examine diagnostics and look for issues with the particular IBM being applied to 

the actual data available. This may raise questions about either the IBM suitability or the data 

themselves. Peer review processes are also used to ensure that assumptions for an IBM are met 

in actual applications, something that could not be easily considered in this study. The results 

presented here should be considered minimum performance of the IBMs given the formulaic 

application of the IBMs without consideration of the data available in any given assessment. 

The Dynamic Linear Model (DLM) approach makes no explicit assumptions about the 

population dynamics, life history, or condition of a stock. It requires at least one index of 

abundance and catch information for use, though it could be employed in a manner similar to 

PlanBSmooth if no reliable catch information was available. If missing values are present in the 

abundance index(ices), the DLM fitting procedure generates a probabilistic imputation in those 

years based upon all of the available data and thus provides an estimate of what would have been 

observed with quantified uncertainty. If catch information is included as a covariate and missing 

values are present, those values will need to be imputed prior to fitting the DLM. The time series 

length necessary to fit the DLM depends upon the number of available abundance indices and 

their signal-to-noise ratio(s), but at least 25 years of data should generally be used. Because the 

DLM “learns” more about the behavior of a stock over time as more data is included in fitting, it 

can be expected that the model fit achieved will improve over subsequent updates. Due to the 

constraints of this simulation experiment, a single model structure and weakly informative prior 

distributions were used. In a management setting, different model components and prior 

assumptions could be compared to determine the optimal structure for a given stock. Similarly, 

catch advice in this work was set such that the mean forecasted stock trajectory was on track for 

a 10-year rebuild (or decline) to the 75​th​ percentile of the observed abundance index. This 

decision rule was only used for this experiment and is not required by the DLM. The DLM 

produces a probabilistic forecast of future abundance observations based upon assumed harvest 

levels (when catch information is included). This forecast and uncertainty can be used by 

managers to aim toward any desired stock level while assessing the risk of different strategies. 

While still in development, the DLM structure can also be augmented to include additional 

covariates (e.g. climate information), length- or age-structure, or multispecies information.  
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The Skate method was developed using the median catch over biomass ratio assuming 

that this would provide a reasonable relative fishing intensity. This is appropriate for stocks that 

have not been undergoing overfishing for half or more of the years considered. It would not be 

expected to perform well in situations where the stock has been undergoing fishing for the 

majority of time. In such a situation, a different quantile of the distribution of catch over biomass 

would be preferred. This aspect was not examined in this study due to time constraints, but could 

be an interesting avenue of future research. 

The IBMs that change the catch advice based on recent trends in the surveys (e.g., PlanB, Islope, 

DLM) do not appear well suited to applying a reduction to the catch advice. This is because 

when the stock rebuilds, the surveys do not change much yet the catch advice continues to 

decline due to the reduction (catch multiplier of 0.75 in this study). This can lead to the situation 

where the stock is well above SSBmsy but the catch advice is well below MSY. This would 

clearly be a frustrating situation for fishers and managers.  
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TOR 6. Create guidelines for setting biological reference points for 

index-based stocks. 

 

The Index Based Methods (IBM) evaluated here used a variety of techniques to derive 

catch advice. The methods ranged from simple deterministic calculations to fitted state-space 

models, but generally fell into three basic categories: 1) IBMs examined the trend in the time 

series to determine if catch should be increased or decreased (e.g. Plan B Smooth); 2) IBMs 

compared the current survey index with with some reference time period of the survey index to 

set catch advise (e.g. Itarget). These methods often calculate the relative fishing mortality 

(catch/survey index) to determine what level of fishing would result in the reference index level; 

and 3) IBMs estimated total biomass (e.g. catch curve) then used a proxy fishing mortality 

reference level derived from other sources to calculate catch advice. True MSY reference points 

are based on the population growth rate of a stock. None of the IBMs estimate the population 

growth rate and thus can not provide true MSY reference points. Instead, the IBMs attempt to 

link the raw survey indices and catch data with thresholds that might serve as reference levels, 

though they should not be considered proxies for MSY reference points. In addition to the 

structural challenges associated with IBMs, a full exploration of the results to provide guidance 

on setting reference points with IBMs was not possible due to time constraints. A review of the 

results however, highlighted a number of interesting observations. 

The trend IBMs (Plan B Smooth, Islope) examine the slope of the survey and catch in the 

most recent years and then modify catch based on the slope of the survey index. The 

performance of the two trend methods with regard to maintaining the population near MSY 

based references points differed considerably. Plan B Smooth consistently ranked as one of the 

top methods for maintaining SSB above SSBmsy and keeping F below Fmsy in the short and 

long term. The method tended to produce relatively conservative catch advice however. Islope 

tended to perform moderately on these same metrics and was consistently ranked in the middle 

of the different IBMs. While the two methods utilize a similar concept to derive catch advice 

based on recent trends in catch and survey, the specifics of the methods result in different 

performance. Islope contains multiple options specifying how conservative the catch advise 
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would be. The IBMWG ran the simulations with the least conservative options suggesting that 

alternative formulations could have resulted in different outputs. 

The survey reference level methods (Itarget, AIM, Skate method, and DLM) utilized a 

range of techniques to set catch advice in order to realize a target survey level. Some methods 

such as AIM and the Skate control rule have a prespecified method for establishing the reference 

level and produce catch advice to realize that goal while others were designed to incorporate a 

user defined reference level. For example, the IBMWG set the reference period for Itarget as the 

last twenty-five years of the base period (years 25 - 50) and the reference level for DLM to the 

75th percentile of the survey index. Both of these methods were then evaluated on their 

performance based on these decisions, when any time period or any percentile could have been 

selected as the reference level. Because of the range of functional forms within the methods and 

the range of potential reference levels, the performance of this group of methods for maintaining 

SSB and F near MSY reference points varied widely. DLM consistently ranked near the top for 

SSB and F metrics, however it was quite conservative and typically resulted in lower catches. 

Had a different reference level been selected such as the mean of the survey index for a 

particular set of years or the 55th percentile of the survey index, both the catch advice and the 

performance of the DLM method could have been different. This group also contained methods 

that consistently ranked in the middle of the IBMs and those that tended to rank near the bottom 

(e.g., AIM, Skate control rule). For the Skate control rule, there is an underlying assumption that 

the time series of data captures a period when the stock is in a reasonable condition. If the survey 

index only captures the stock when it is overfished, the Skate control rule will provide catch 

advice that maintains it at that overfished level. When setting the reference period for many of 

these methods, at least qualitative information on the status of the stock is very important. 

Without some information on an appropriate biomass target level, it will be difficult for many of 

the methods to produce catch advice to achieve the target.  

Two methods estimated total biomass with two different techniques (catch curve analysis 

and the expanded biomass method) and utilized proxy target fishing mortality values to produce 

catch advice. Despite using the same fishing mortality estimates that could be considered proxy 

Fmsy values (F40% from a spawner per recruit analysis and F=M), the two methods performed 

very differently based on the SSB, F, and catch metrics. The catch curve analysis consistently 
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ranked among the top methods when producing catch advice with F40% or F=M, while the 

expanded biomass method ranked in the middle and low end of the IBMs. Within a single 

method, such as within the catch curve analysis, the performance was similar when using F40% 

or F=M, though not identical. The same was true for the expanded biomass method. The 

expanded biomass method also evaluated the performance of simply using the mean of the most 

recent catch to provide catch advice (Frecent). This method tended to perform well, typically in 

the top half of all methods, however, the starting conditions were likely very important for this 

method. In many of the scenarios, the IBMs started providing catch advice to a population that 

was near its MSY reference points. Harvesting at MSY when the biomass is at Bmsy should 

maintain the population. The use of this method when the stock is above or below Bmsy, 

however, would maintain the stock at a low level or forgo potential yield.  

Despite a huge volume of simulations and results, the output did not produce consistent 

guidelines for developing IBM reference levels. A few factors to consider did emerge, however. 

At least a qualitative knowledge of the status of the stock (e.g. good, bad, ok) is important for 

setting a reference level. Some examples of qualitative stock indicators include increases in 

exploitable biomass from surveys, expansion in size or age structure in fishery-dependent and 

independent data sources, and tracking and monitoring the progress of year classes over time. 

While there are numerous caveats around why a stock might have been in an ok state at some 

point in the past (e.g. high productive period, limited harvest), without at least some historical 

knowledge, a reference level could be inadvertently set that maintains a stock in an overfished 

condition. The actual functional form of the index based method can be as important as the 

reference level itself. Plan B smooth and Islope both examined the trend of the time series in the 

most recent years, however their performance was quite different. Similarly the catch curve 

analysis and the expanded biomass method both estimated total biomass and used the same 

fishing mortality rate, but produced different results. DLM and Itarget have very different 

functional forms and were run with different reference levels. It would be interesting to see how 

they performed if given the same reference level. Future work based on this study could focus on 

two aspects: 1) conducting a similar simulation study with a subset of the IBMs and examine a 

range of different reference levels and different initial biomass conditions for each method to 

determine when different reference levels work. 2) Further exploration of the results of this and 

other simulation and real word examples for potential relationships between the survey and catch 
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time series and MSY reference points. As always, all results need to be considered in light of the 

assumptions, starting conditions, and decisions made by the working group. Different 

assumptions and starting conditions could produce different results.  
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Conclusions and Recommendations 

 

General conclusions and recommendation  

● For stocks that have had an age-based assessment rejected due to a strong retrospective 

pattern, there is no expectation that an index-based assessment will perform better than a 

rho-adjusted statistical catch at age analysis.  

● The performance of an index-based assessment in a specific situation can be analyzed 

through the framework developed for this project, but requires specific hypotheses about 

possible sources of the retrospective pattern. 

○ The IBMWG recommends this framework be used for all assessments that have 

changed from age-based to index-based due to retrospective patterns, using 

biological and fishery settings appropriate for that stock to ensure the selected 

index-based method has a high probability of providing reasonable catch advice.  

● The IBMWG recommends future research be conducted to both analyze the results of this 

study in more detail as well as build on this study to address other questions 

○ Examples of future research on the results of this study include 

■ Filtering the results to have a common value for one metric, say 

probability of overfishing in the long term to see how the other metrics 

compare across IBMs. This is conceptually similar to tuning the IBMs to 

produce a common risk outcome, but is easier to apply across multiple 

scenarios. 

■ Digging into the detailed results to look for reasons why IBMs of similar 

type did not always perform similarly while IBMs of different types 

sometimes did. 

■ Exploring the detailed results to look for observed data that could be used 

to set biological reference points. This is a big task that will probably 

require additional simulations to fully address. 

○ Examples of future research building on this study include 

■ Examining life history and fishery characteristics beyond groundfish 
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■ Applying multiple or additional sources to create the retrospective patterns 

■ Applying different magnitudes of retrospective patterns 

■ Using state-space models to see if performance is better than SCAA 

■ Tuning the framework to specific data for a stock to examine performance 

of IBMs in a specific situation 

 

Process related conclusions and recommendations 

● More time needs to be allocated to topic-based research tracks in order to fully address 

the TORs.  

● Covid-19 travel limitations required weekly meetings with remote collaborations. This 

may be a useful approach for future topic-based research tracks, but may be less useful 

for stock-specific research tracks. The time certain weekly meetings helped track the 

programming and decision making progress necessary for the large simulation study. 

This may not apply well to stock-specific research tracks. 

● GitHub was helpful for coordinating coding among multiple programmers. 

○ Training session early on would ensure everyone able to work together efficiently 

● This was a big project that required lots of computing power. The cooperation of network 

users not involved in the project to free up computing time was greatly appreciated. 

● Fast internet speed an issue for moving large files and large numbers of files 

○ Cloud computing would have been helpful  

● Google docs with prompts before meeting allowed asynchronous contributions and then 

could build on it during meeting 

● Google docs handy for meeting notes but not great for report writing 

○ Need workflow all the way through to final report (508 compliance) 

○ Would be helpful to be able to use Rmarkdown so don’t have to update tables and 

figures in report by hand 

● Project management software (e.g., Jira) could be useful but would require training 
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