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Ecosystem-scale examination of fish communities typically involves creating spatio-temporally explicit relative abundance distribution maps
using data from multiple fishery-independent surveys. However, sampling performance varies by vessel and sampling gear, which may influ-
ence estimated species distribution patterns. Using GAMM:s, the effect of different gear—vessel combinations on relative abundance estimates
at length was investigated using European fisheries-independent groundfish survey data. We constructed a modelling framework for evaluat-
ing relative efficiency of multiple gear—vessel combinations. 19 northeast Atlantic surveys for 254 species-length combinations were examined.
Space-time variables explained most of the variation in catches for 181/254 species-length cases, indicating that for many species, models suc-
cessfully characterized distribution patterns when combining data from disparate surveys. Variables controlling for gear efficiency explained
substantial variation in catches for 127/254 species-length data sets. Models that fail to control for gear efficiencies across surveys can mask
changes in the spatial distribution of species. Estimated relative differences in catch efficiencies grouped strongly by gear type, but did not ex-
hibit a clear pattern across species’ functional forms, suggesting difficulty in predicting the potential impact of gear efficiency differences
when combining survey data to assess species’ distributions and highlighting the importance of modelling approaches that can control for
gear differences.

Keywords: catchability, fisheries-independent assessment, gear efficiency, generalized additive mixed model, species distribution modelling,
survey standardization.

Introduction Union (EU) Marine Strategy Framework Directive (MSFD; EC,
As ecosystem-based management in the marine environment 2008, 2010, 2017), Common Fisheries Policy (EC, 2013), US
advances, fisheries policies increasingly require consideration of =~ Magnuson-Stevens Fishery Conservation and Management Act
both target and non-target species in assessing the state of fisher-  (US, 1996, 2006), etc.]. This transition to ecosystem-based man-
ies and fishing impacts on marine ecosystems [e.g. the European ~ agement has led to a need for greater understanding and detailed
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information on the distribution of a broad spectrum of fish spe-
cies across large spatial scales, such as large marine ecosystems or
ecoregions (Kelley and Sherman, 2018).

Fisheries-independent groundfish surveys sample both com-
mercial and non-target fish species, often providing the only data
source available to estimate relative abundances for non-
commercial species (Poos et al., 2013). These surveys tend to be
discrete monitoring programmes, operating at local scales usually
associated with the exclusive economic zones of countries manag-
ing the surveys. To obtain information on fish distributions at
large marine ecosystems scales, therefore, requires integration
across national jurisdictional boundaries and multiple disparate
surveys that may differ in terms of spatial coverage, survey vessel,
season, types of fishing gear, and survey protocols. Amalgamating
such data into a single cohesive analysis is difficult because of po-
tential differences in gear efficiency among different length classes
and species of fish (Fraser et al., 2007; Walker et al., 2017), types
of survey gear, and vessels that vary in their fishing power (Dann
etal., 2005).

Estimates of species’ latent abundance, and hence species-at-
length catchability coefficients, are rarely available in fisheries sur-
vey data. In isolation, each individual survey provides estimates
of species’ relative abundance at sampled locations and can pro-
vide an assessment of the spatial distribution of fish within the
survey domain. Problems may arise, however, when two or more
surveys need to be combined to assess species’ distributions. If
gear efficiencies vary between different surveys, then estimates of
species relative abundance provided by each survey may not be
compatible. Failure to understand, or ignoring, how gear effi-
ciency differs between surveys may lead to incoherent abundance
estimates when merging surveys together to conduct assessments
at large spatial scales. To perform such assessment, therefore,
requires quantification of gear efficiency for different species, dif-
ferent size classes of fish, and different gears.

The traditional approach to estimating gear efficiency is
through paired field experiments, where two vessels fish side by
side and compare catches (Somerton et al., 1999; Zhou et al,
2014). Such experiments are costly to conduct and are generally
implemented over limited spatial and temporal scales. However,
where different survey domains overlap spatially, there may be
opportunity to utilize species distribution modelling to comple-
ment, or even replace, field-based estimation of gear efficiencies
(e.g. Ono et al., 2018); thereby providing a convenient framework
for handling data from disparate surveys that can be regularly
updated as new survey data become available. Statistical model-
ling of species distributions from large data sets is no longer lim-
ited by insufficient computing capacity. The use of such models
offers an opportunity of overcoming challenges in combining
data across surveys with varying gear efficiencies to enable the ex-
tensive study of marine species distributions across large spatial
scales.

Here, we build from previous gear efficiency modelling efforts
(Zhou et al., 2014; Walker et al., 2017) with an aim to advance
the tools available for combining information across disparate
fisheries surveys towards informing the spatial ecology of marine
species. The spatial scale, the number of species assessed, the in-
teraction between the gear—vessel combinations, and the spatial
and temporal variation inherent within European fisheries sur-
veys presents unique challenges requiring a new approach.
Utilizing generalized additive mixed models (GAMMs); we ana-
lyse the proportion of variance explained by the differences in

M. Moriarty et al.

gear efficiency and the spatial-temporal variation in abundance
of 135 species, in three length categories, collected in the 19
northeast Atlantic groundfish surveys with 24 different gear—ves-
sel combinations. Here, we focus on bottom trawl gears, namely
otter trawls and beam trawls, as others have previously focused
on combining acoustic measurements with habitat data to gain
inference about the abundance of fish and infer on bottom trawl
gear efficiencies (Kotwicki et al., 2018). Three length categories
were chosen to (i) capture the main intra-specific length-related
catchability differences described in previous studies (Fraser
et al., 2007; Walker et al., 2017), (ii) broadly reflect trophic guilds
in marine fish communities (ICES, 2017), and (iii) reflect the
main size classes of fish either retained in commercial trawls or
that escape through the mesh (Piet et al., 2009). The 24 gear—ves-
sel combinations were chosen to best reflect the perceived differ-
ences in rigging and standard operating procedures carried out
by different countries in their national surveys (Table 1). By un-
derstanding which species in our length categories are affected by
variations among gears and vessels, our primary goal is to develop
a consistent approach for combining groundfish surveys to facili-
tate marine ecosystem monitoring at large spatial scales. Using
the GAMMs to control for differences in gear efficiency among
surveys, we also generate estimates of spatial and temporal trends
of relative abundance for species among different length catego-
ries throughout the northeast Atlantic to inform marine fish
community ecological analyses (covering three ICES marine ecor-
egions/large marine ecosystems: Greater North Sea, Celtic Seas,
and Bay of Biscay and the Iberian Coastal; Spalding et al., 2007).
Finally, we conclude with a discussion of high priority informa-
tion needs to further improve understanding of gear efficiency
within marine fisheries survey data.

Methods

Fisheries surveys

Data for most European groundfish surveys are uploaded and
maintained on the ICES “Database of Trawl Surveys” (DATRAS).
Data for surveys carried out in the Northeast Atlantic were re-
cently subjected to a quality assurance and quality audit (QAQA)
process (Greenstreet and Moriarty 2017a, 2017b; Moriarty et al.,
2017, 2019), to ensure their adequacy to meet monitoring and as-
sessment requirements under the EU MSFD (EC, 2008, 2010,
2017). These standard monitoring programme data products,
along with data for four Spanish surveys, which underwent the
same QAQA process but were not fully uploaded to DATRAS,
were used in this study to obtain maximum spatial and temporal
coverage and include the widest possible range of survey types for
modelling (Table 1). Each survey data product includes the num-
ber of fish caught (C;;) of a species (s) at length (I), for each
trawl sample (i), along with the vessel and fishing gear (g), tow
location, date, depth, and swept area (E). The fishing gear (g),
included information from vessels that were expected to fish dif-
ferently based on their gear configuration information. For exam-
ple, both French and Irish vessels surveying in the Celtic Seas
region use a GOV gear. However, the French surveys use double
sweeps, and the Irish surveys rotate between a standard GOV sur-
vey gear (ICES, 2015) and a double sweep with 16-inch bobbins,
depending on the substrate (Table 1). The fish abundance data
were organized into three broad length categories (Ic), small unf-
ished (<23 cm), intermediate transition (23-35cm), and large
fished (>35cm). Groundfish surveys record those species and
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lengths caught, zeroes are implied, and so in order to reflect
where a species at length were not caught, data rows for zero
catches were added where species at length were not reported in a
sample. To ensure constant and equivalent distance units, survey
sample latitude—longitude coordinates were converted to eastings
and northings (X, Y) using R package “Rgdal” (Bivand et al.,
2019). Date (t) was incremented in quarterly time bins starting
from quarter 4 (October to December) 2003, which was assigned
time step t = 1, whereas the quarter 1 (January to March) 2004
was assigned time step ¢ = 2, and so on.

Exploring sources of variation in survey abundance at
length data

GAMMs were used to account for non-linear spatial and tempo-
ral trends in fish density while simultaneously estimating gear ef-
ficiency using a modelling framework adapted from Walker et al.
(2017). Survey catches were modelled as counts, with separate
regressions for each species-length bin combination. Many spe-
cies had a preponderance of zero catches. Initial exploration cast-
ing GAMMs for all species within Poisson, negative binomial,
and zero-inflated Poisson frameworks showed that Poisson mod-
els provided a poor fit and failed to accommodate over-
dispersion in catch data. Negative binomial and zero-inflated
Poisson models showed similar fits for non-schooling species, but
schooling species violated the assumption of independence re-
quired by Poisson processes. Consequently, we analysed catches
as negative binomially (NB) distributed GAMMs fit using the
“mgev” package (Wood 2004, 2011) in the R statistical program-
ming environment (R Core Team, 2017). The full model for a
given species and length category catch data set had the form:

G~ NB(.“iv k) (1)
with E[C] = u; = elog (B)+s(Xi, Vi, ti)+2gi)
where C; is the number of fish of a given species in a given length
category caught in the ith sample (fishing event), k is the negative
binomial shape parameter representing the degree of over-disper-
sion, log(E;) is the log of swept area for fishing event i, which was
included as an offset to account for varying fishing effort among
trips, s(X;, Y;, t) denotes a multivariate smoothing function to
represent spatio-temporal trends in catch data, and zg;) are i.i.d.
normally distributed random effects for gear—vessel combinations
associated with fishing events. The space-time smoothing model
component, s(X;, Y;, ), was specified as a tensor product
smoother for which the associated basis functions were cast as cu-
bic splines with shrinkage [i.e. te(X;, Y;, t;, bs= “cs”) in mgev
formulaic notation], a formulation, which can accommodate data
on different scales (Wood 2004, 2011). Gear—vessel combination
was treated as a random effect, as opposed to a fixed effect, be-
cause variation among catch efficiencies is the primary feature of
interest, and because this approach also aids in model conver-
gence by reducing the number of fitted parameters. The
spatio-temporal smoother describes the underlying estimated dis-
tribution of species across space and time; whereas the random
effect controls for variation among gear efficiency when combin-
ing disparate survey data sets. To facilitate model convergence,
we excluded data on species at length for which any given length
category was sampled by fewer than two gear—vessel combina-
tions or was sampled fewer than 100 times. The full model was
compared to a reduced model that included space-time
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covariates, but which did not account for the effect of gear—vessel
combinations (i.e. the gear—vessel combination random effect
was dropped) in order to assess the impact on species distribution
modelling inference when gear is ignored. Comparisons of full
and reduced model fits were assessed using Akaike’s information
criterion (AIC). The full model was further assessed for reliability
using visual tests and a chi-squared goodness of fit test. To sub-
stantiate that our GAMM models can effectively differentiate be-
tween the random gear—vessel effects and the spatial and
temporal variation in the abundance of demersal fish in the
north-east Atlantic region, we performed a simulation—estimation
experiment (Supplementary material S2).

Interpretation of models

To interpret the importance of gear efficiency vs. spatio-temporal
distribution patterns in explaining variation in survey data, we
utilized variance components analysis (Wood 2008, 2011). This
analysis allows us to assess the total amount of variation in our
dependent variable (C;) that is associated with our random effect
variable [zg(i)] (Garson 2012). This analysis partitions total varia-
tion in the fitted data among the three modelled components:
gear efficiency, spatio-temporal distribution, or unexplained re-
sidual variation. Accordingly, when the gear component consti-
tutes the preponderance of model variation for a given species
and/or length category, we conclude that gear efficiency varies
widely across gears and surveys. In contrast, when location and
time make up the majority of model variability for a given spe-
cies, while the gear component explains very little of the variabil-
ity we conclude that gear efficiency appears to be similar across
different gear—vessel combinations.

A non-metric multidimensional scaling (nMDS) uncon-
strained ordination technique using Euclidean distances was
employed to explore how each species within the assemblages var-
ied with estimates of gear efficiencies among gear—vessel coeffi-
cients and length classes from our models. Species were grouped
by taxonomic order as a proxy for functional forms to examine if
there was a pattern in estimates of gear efficiencies in species
groups with similar morphological or ecological attributes. The
gear—vessel coefficients were conditioned into a matrix, where the
Scottish vessel with a GOV gear type was used as a reference gear,
and the difference was calculated for each other gear—vessel com-
bination. Permutational multivariate analysis of variance
(PERMANOVA) was used to test the differences between the
gear—vessel coefficients derived for each species in each length
class from our full models for similar gear types. A clustering cri-
terion that minimizes the amount of variance within in the gear—
vessel groups was implemented (Ward, 1963). Euclidean distance
was used and the p-value was set to 0.05. The nMDS and
PERMANOVA routines were implemented in R (R Core Team,
2017) using the “vegan” package (Oksanen et al., 2017).

Results

Data for 135 fish species were available from otter trawl surveys
across the northeast Atlantic, whereas beam trawl surveys operate
in a much more limited area within the North and Irish Seas
(Figure 1). The surveys carried out in the Irish Sea have the high-
est degree of spatial and temporal overlap, whereas survey overlap
is more limited in the Bay of Biscay and Iberian Coast region
(Figure 1).
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Figure 1. Fisheries-independent survey coverage across the northeast Atlantic. Thick black line shows Oslo/Paris convention boundaries.
Number of surveys operating in each ICES statistical rectangle is depicted by a different colour. See Table 1 for list of surveys.
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Two hundred and fifty-four full GAMMSs were fit to 132 spe-
cies in up to three length categories (Figure 2). For fishes in the
smallest size class (<23 cm), the full model was fit to 109 species,
and 23 species had insufficient data based on the criteria de-
scribed in Methods (Exploring sources of variation in survey
abundance at length data). For fishes in the intermediate transi-
tion category (23-35 cm), the full model was fit to 85 species, and
47 species had insufficient data. For the largest size class
(>35cm), the full model was fit to 60 species, and 72 species had
insufficient data.

In 39/254 models, the unexplained variance was greater than
the explained variance (Figure 2). In 237/254 of the species-
length combinations, the full model, which controlled for differ-
ences in gear—vessel combinations, improved the deviance
explained over the reduced model (Supplementary Table S1.1).
The 250/254 full models had a lower AIC score than the reduced
model. In the cases where the full estimates did not improve in-
ference, the differences in the amounts of deviance explained and
the AIC scores between the full and reduced models were small
(Supplementary Table S1.1).

In 215/254 full models, over 50% of the variation in the data
can be explained, suggesting that this framework is an effective
way of calculating variance in latent species abundance over a
large spatial scale. In 181/254 full models, location (X, Y) and
time (f) components of the model explained over 50% of the
variation in the data, suggesting that catch rates are strongly
driven by the spatial-temporal distribution of the species, while
the random effect of fishing gear on a given vessel (g) at a given
length category (1) generally plays a smaller role in explaining var-
iance, which suggests that the behaviour of the fish has a similar
response to all gear types. Indeed, in 51 of these 181 models, the
overall variance explained is >50%, but the variance explained by
gear is <1%. As an example, for common dab (Limanda limanda)
in the <23 cm length class, the random effect of fishing gear on a
given vessel (g) explains 0.007% of the variance, while location
(X, Y) and time (¢) components explained 62.2% of the vari-
ance (Figure 3a and b). In this case, the reduced model, where lo-
cation (X, Y) and time (¢) components explained 61.1% of the
variance, performed similarly to the full model (Supplementary
Table S1.1).

In 37/254 full models, the overall variance explained is >50%,
and the gear component explains between 1% and 5% of the vari-
ation, suggesting that gear efficiency varies across gears and vessel
combinations but has relatively little influence on catch perfor-
mance. For example, for the thorny skate (Amblyraja radiata) in
the 23-35 cm length class, the random effect of fishing gear (g)
explained 3.7% of the variance, while location (X, Y) and time
(t) components of the full model explained 68.7% of the vari-
ance. While the estimated variance component for gear effects
was smaller than the space-time components, the effect of fishing
gear can be seen in the difference in spatial pattern between the
full and reduced models (Figure 3d).

In 127/254 full models, the overall variance explained is
>50%, and the gear component explains more than 5% of the
variation, suggesting that gear efficiency for these species at length
varies substantially across gear and vessel combinations. For ex-
ample, for sole (Solea solea) in the 23-35 cm length class, the ran-
dom effect of fishing gear (g) explained 8.6% of the variance,
while location (X, Y) and time (f) components of the full
model explained 46.5% of the variance in the data (Figure 3e and
f). In this case, the output of the full model highlights the
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importance of understanding the effect of fishing gear in assessing
the distribution of this species.

To assess the difference in inference gleaned from the full and
reduced models, we further explored the spatial-temporal pattern
of sole (S. solea) in the 23-35 cm category. While the general pat-
tern is similar in the full and reduced models (Figure 4), the re-
duced model suggests the presence of intermediate-sized sole off
of the coasts of Spain and Portugal; whereas the full model sug-
gests that there is no intermediate-sized sole in these areas. When
examined more specifically, we see that for the entire area, the
sole data are 88% zero values, but for the southern part of the
study area, where Spain and Portugal survey, the sole data are
96.5% zero values. Consequently, we can conclude that the re-
duced model is likely to overestimate the abundance in this area
and that this overestimation is likely an artefact of not accounting
for gear.

Aggregating over the entire distribution of sole, there is a
steadier rate of movement in the centre of mass in the population
estimated from the full model, while the movement in the centre
of mass in the population estimated from the reduced model is
more variable (Figure 5a). The centre of mass metric highlights
the eastward movement in the population in the full model,
which is not the case in the reduced model (Figure 5b). The infer-
ence from the simulations suggests that the full model should be
more capable of capturing the direction of movement than the re-
duced model (Supplementary Figure S2.4).

Unsurprisingly, nMDS highlights that the estimated gear coeffi-
cients vary considerably by gear types (Figure 6a; PERMANOVA
test for differences in gears: F = 2.36, R2 = 0.18, p = 0.001).
However, gear coefficients are largely consistent within gear type,
indicating stable catch efficiencies within gear types regardless of
the survey country of origin or vessel. The GOV, beam trawls, and
baca trawls gear—vessels tended to group most closely in their esti-
mated gear coefficients, whereas other gears tended to differ more
widely. The GOV has the highest level of variance and is the most
widely used gear within the region. The beam trawl surveys have a
high level of spatial overlap with the surveys that use the GOV gear
in the North Sea and the rockhopper trawl in the Irish Seas. The
baca trawl has very limited spatial overlap with other gears as it is
used exclusively by the Spanish in the Bay of Biscay and Iberian
Coast region. There is no clear pattern emerging in the estimated
relative difference in catch efficiencies across species functional
form (Figure 6b).

Discussion

Understanding how gear efficiency impacts fishery-independent
survey sampling is required for robust multi-survey species distri-
bution modelling of both commercial and non-commercial spe-
cies and is a key factor in determining absolute abundance
estimates for commercial stocks (Kasatkina and Ivanova, 2009;
Maunder and Piner, 2015). The aim of the analyses presented
here is to provide an overall understanding how species are af-
fected by the rigging of individual vessels to guide future
ecosystem-scale species distribution modelling and examinations
of fish communities. Our models support the derivation of rela-
tive species abundance estimates, and they provide information
on gear efficiency of 24 gear—vessel combinations seasonally for
three length groups chosen to reflect the main intra-specific
length-related differences described in previous catchability stud-
ies (Fraser et al., 2007) in this region. This provides a modelling
workflow to combine data across surveys that control for
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Figure 3. (a and b) Common dab (L. limanda) <23 cm, highlighting an example of a species where the reduced and full model perform
similarly as the variance explained by gear is very small (0.007%). (c and d) Thorny skate (A. radiata) 23-35 cm, highlighting an example of a
species with between 1% and 5% variance explained by gear. (e and f) Sole (S. solea) 23-35 cm, highlighting an example of a species with >5%
variance explained by gear. (a, ¢, and e) Estimated domain-wide species’ abundance trends for the full model, which controls for gear
differences across surveys, vs. the reduced model, which does not control for gears. A large discrepancy between the curves indicates gear
differences across surveys may impact inference about species’ abundance and distributions. (b, d, and f) Differences in predicted species’
relative mean abundance between the full and reduced models. Dark colours represent large discrepancies between the models, indicating
differences in gears across surveys may influence estimated species’ distributions if not accounted for.

potential gear—vessel-specific differences in catchability. The flexi-  the gear efficiency coefficients calculated in this analysis were esti-
ble framework provided here may be adapted to the end-users’ mated using a 10-year historical time span and are only valid un-
needs; for example, different length categories may be applied to  der the conditions for which they are calculated. As such, any
answer specific ecological questions. We caution; however, that  efforts to employ them for correcting individual survey species
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Figure 5. Summary of difference in inference from the spatial-temporal pattern of sole (S. solea) 23-35 cm from the full and reduced
models. (a) Cumulative movement from the centre of mass from the start of the time series for the full model (blue circles) and the reduced
model (red triangles). (b) Centre of mass of the abundance of the fish from the full model (blue circles) and the reduced model (red

triangles).
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Figure 6. nMDS plots describing how the gear—vessel coefficients varied by survey or by taxonomic grouping (stress = 0.102). (a) Gear
coefficients grouped by trawl type (colours) and survey research vessel name (labels). Points more closely situated are more similar in terms
of their gear—vessel coefficients. Ellipses indicate the 95% confidence intervals for clusters of each gear type. (b) Gear coefficients grouped by

taxonomic order as a proxy for species’ functional form.

catches need to take this into account (Arreguin-Sanchez, 1996).
Thus, we strongly suggest employing this flexible modelling
framework, or similar, to estimate gear efficiency coefficients as a
matter of best practice in any study that uses data from multiple
surveys rather than using spatially and temporarily limited paired
comparisons.

In 15% (39/254) of models, the unexplained variance is higher
than the explained variance (Figure 2). Given that it is unlikely

for a species to be randomly distributed in space and time, this
high unexplained variance is likely due to the rareness of the spe-
cies within a given length category (i.e. there are not enough sam-
ples to describe the latent species distribution). Species that are
rarely caught may not be rare in the environment, but instead
may be particularly poorly sampled (i.e. low gear efficiency) in
the survey trawl gear. Sampling of fish in the marine environment
by fishing gear is known to be imperfect (Fraser et al., 2007; Zhou
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et al., 2014; Walker et al., 2017). This means additional considera-
tions may need to be addressed during sampling and data analy-
sis, such as joint dynamic species distribution modelling
(Thorson et al., 2016). Reliable inference depends on sampling
methods that produce reasonable odds of detection given pres-
ence, where no estimator will be particularly helpful when applied
to data on populations or species that are “invisible” to collection
gear (MacKenzie et al., 2006).

The estimated variance components from our models show
that in 35% of cases (88/254), the location and time components
explained most of the variation in the data, while the gear com-
ponent explained relatively little variation (<5%; Figure 2). This
suggests that in such circumstances, for species, like common
dab, where there is enough spatial-temporal overlap to be confi-
dent in the model results, the spatial-temporal distribution of
these species could be estimated using combined survey data, al-
though the authors recommend always using the modelled out-
puts over the raw survey data. Where the modelled gear
component is especially small, particularly in relation to the loca-
tion and time component, use of raw survey catch data from mul-
tiple surveys provides a reasonably accurate representation of
temporal and spatial variation in species’ abundances (by length
category) at large spatial scales. The common dab (Figure 3a and
b), highlights a circumstance in which little variance can be at-
tributed to gear effects, and we see a consequent small difference
in inference in the temporal and spatial trends between the full
and reduced models. The variance explained by the gear is <1%
while the spatial and temporal components explain 62.2% of the
variance. Thus, this species (by length category) abundance
appears to be less impacted by the effects of gear as the catch rates
are likely driven by the behaviour of the fish. The variation that is
attributable to gear effects is smaller than that attributed to space
and time in most of our GAMM models, but the nature of the
gear effects are not randomly distributed throughout the study
area or throughout the year. They are instead systematically dis-
tributed by seasonal surveys. This regularity in the differences
may impact species distribution inference at large scales.
Simulations (S2a) for species demonstrating substantial move-
ments in distribution attributed 5.7% of model variance to gear,
even when no gear effect was included. This suggests that some of
the variance associated with location and time may be attributed
to gear, but inferences from full and reduced models were similar.
Conversely, when there is a strong gear effect (S2b) then the full
model improves inference of abundance estimates and direction
of population centre of mass movements over the reduced model
(Supplemental Material S2).

Not accounting for gear may lead to incorrect estimates of rel-
ative abundance or species’ distributions. Data analysed here sug-
gest that gear effects on catches across disparate surveys are not
uncommon, whereby in half of our full models (127/254), the
gear component explained more than 5% of the total variation in
survey catches, while overall variance explained is >50%. Our ex-
amination of the distribution of sole provides demonstration of
the potential importance of controlling for gear effects when
attempting to combine data across surveys for some species. The
variance explained by gear, in this case, was 8.6%, while the spa-
tial and temporal components of the model accounted for 46.5%
of the variance. Consequently, we found substantial differences in
relative abundance trends between models, which control for gear
effects compared with reduced models, which ignore gear effects
in combining data across surveys (Figures 3d and e, 4, and 5).

M. Moriarty et al.

Importantly, failure to control for gear differences across surveys
for this species would mask differences in the spatial distribution
of the stock across commercial fishing areas, as well as mask
ecosystem-scale population shifts to the east (Figure 5). It may be
valid to pool across surveys in assessing species distributions for
many species—size combinations; however, there are differences
evident across gear types and it is not clear a priori for which spe-
cies gear differences matter (Figure 6b). Thus, a sensible workflow
when combining data across surveys may be to implement mod-
els that control for gear type as demonstrated here and then sub-
sequently evaluate whether gear differences account for a
substantial portion of the variation in catches.

Northeast Atlantic waters are currently surveyed by 12 coun-
tries carrying out 19 different surveys designed with individual
goals and objectives and using different vessels and a variety of
gears (Table 1). ICES facilitates survey coordination and collabo-
ration through working groups to make the surveys as compara-
ble as possible. The North Sea bottom trawl surveys have led the
way in terms of minimizing gear efficiency issues caused by differ-
ences in vessels and by ensuring survey overlap and similarity
among gears (ICES, 2015). There is a large body of work ongoing
in ICES survey groups (e.g. Working Group on Beam Trawl
Surveys, International Bottom Trawl Survey Working Group) to
minimize survey variability; however, assessing relative gear effi-
ciency at the scale examined here highlights the need for compar-
ative experiments to help achieve a more coherent understanding
of gear efficiency within fisheries-independent survey data. This is
particularly relevant in the Bay of Biscay, where overlapping or
paired tows between the Spanish Baca Trawl and Portuguese
Norwegian Campelen Trawl and the Spanish Baca Trawl and
French Grande Overture Vertical Trawl would help to improve
inferences of species relative abundance obtained from these dif-
ferent gears (Figure 6a). Analyses herein provide further under-
standing of the differences in gear efficiency between trawl gears
used by different surveys for species sampled across the northeast
Atlantic.

Information on the abundance and distribution of organisms
is a fundamental knowledge need for fisheries management. Data
on predator and prey abundances by different age and size classes
can inform species status assessments as well as provide informa-
tion on the interactions among species and size classes, providing
understanding about the impact of fishing on fish communities
(Fraser et al., 2007; e.g. Large Fish Indicator). This study provides
an approach to facilitate comparability between catches from dif-
ferent surveys and gears, providing a framework to assist in inte-
grating data across countries, regions, and sampling programmes
towards maximizing the use of available information to inform
species’ abundance and spatial distribution assessments.
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Notes on fishing gear exceptions
S = Standard Gear; B = Bobbins used; D = Double Sweeps;
12 = Ground gear D with 16-inch bobbins; R = Rockhopper.

Grande overture vertical trawl

(1) Scotland uses R.V. Scotia III on five surveys WAScoOT3;
CSScoOT4; CSScoOT1; GNSIntOT3; and GNSIntOT1. For the
west coast surveys (CSScoOT4/CSScoOT1/WAScoOT3) they use
an “S” and “I2” gear to deal with rocky habitat. In North Sea sur-
veys (GNSIntOT3; GNSIntOT1), Scotland uses an “S” and a “B”
exception.

(2) Sweden uses a standard GOV (“S”) on R.V Argos and R.V.
Mimer in both North Sea surveys (GNSIntOT3 and
GNSIntOT1).

(3) Denmark uses an “S” gear and an “R” exception in both
surveys on R.V. Dana II in both North Sea surveys (GNSIntOT3
and GNSIntOT1).

(4) United Kingdom uses a standard GOV (“S”) gear in the
North Sea (GNSIntOT3) on R.V. CEFAS Endeavour.

(5) The Netherlands uses a standard GOV (“S”) gear in the
North Sea (GNSIntOTI1) on R.V. Tridens II. R.V. CEFAS
Endeavour was used in quarter 1 by Netherlands when Tridens
broke down.

(6) Norway uses an “S” gear and “D” exception on R.V. G.O.
Sars and R.V. Johan Hjort in the North Sea (GNSIntOT3/
GNSIntOT1). When the R.V Haakon Mosby has been used only a
standard gear is noted.

(7) France uses a GOV gear in the North Sea (GNSFraOT4) on
R.V. Gwen Drez, no exception is noted; however, the gear is
smaller than the standard gear in the North Sea. France uses
Thalassa II on two surveys CS/BBFraOT4 and GNSIntOT1. For
the west coast surveys (CS/BBFraOT4), they use ground gear “D”
while in the North Sea surveys (GNSIntOT1), a standard gear is
used.

(8) Germany uses a standard gear on R.V Walther Herwig III
in the North Sea (GNSIntOT3/GNSIntOT1).

(9) Ireland uses an “S” and “I2” gear for west coast survey
(CSIreOT4) to deal with rocky habitat in line with Scotland on
R.V. Celtic Explorer. Beam Trawl.

(10) The Netherlands uses R.V. Tridens II and R.V Isis in the
GNSNetBT3 survey. Both ships use an 8 m beam with a tickler
but Tridens II has a different set up to Isis.

(11) Germany uses a 7m Beam trawl with a 5m tickler chain
on R.V. Solea II during GNSGerBT3.

(12) United Kingdom uses a 4 m Beam trawl during both her
CSEngBT3 and GNSEngBT3 surveys on R.V. Corystes and
CEFAS Endeavour in 2014 and 2015 with the same rigging on
both ships. Rockhopper Trawl.

(13) The Rockhopper Otter Trawl in used by Northern Ireland
in the CSNIrOT4/CSNIrOT1 on R.V. Corystes. Baka Trawl.

(14) Spain wuses a Baka trawl on three surveys
(BBIC(s)SpaOT4/BBIC(s)SpaOT1/BBIC(n)SpaOT4) on R.V.
Cornide de Saavedra.

(15) Spain uses a Porcupine Baka trawl on one survey
(WASpaOT3) on R.V. Vizconde de Eza. Norwegian Campelen
Trawl.

(16) Portugal reports B and R gear exceptions on R.V
Noruega.
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