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Report Description 

This final report is provided as an executive summary followed by four manuscripts that we are 
preparing for submission to scientific journals.  The executive summary provides the overview of 
the methods and results, and the details are in each manuscript.   
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Executive Summary 

Introduction   

In the revised National Standard 1 Guidelines for the Magnuson-Stevens Fishery Conservation 
and Management Reauthorization Act (MSFCMRA 2006), the Statistical and Scientific 
Committee (SSC) of each of the eight regional management Councils has been tasked with 
recommending Acceptable Biological Catch (ABC) levels.  Importantly, the ABCs will constrain 
the annual catch limit that must be set by the Council as the Councils cannot set a catch level 
above the ABC recommended by its SSC. Moreover, National Standard 1 requires that scientific 
uncertainty be used to guide the selection of an ABC by achieving a specific, acceptable risk of 
overfishing.  These dual directives are being implemented by establishing control rules that 
govern decision making for fishery management.  Many control rules have been developed and 
tested to manage fisheries (reviewed in Deroba and Bence 2008), yet few of these satisfy the 
requirements of the National Standard 1 Guidelines.  In particular, achieving a specified level of 
risk of exceeding a fishing mortality threshold has generally not been an explicit criterion for 
control rules.   

Many sources of scientific uncertainty affect our understanding of past population dynamics of a 
stock, its current status, and how it will respond to fishing in the future.  Most stock assessments 
will not include all important sources of uncertainty.  The relevant uncertainties can be usefully 
separated into four categories: data quality, model uncertainty, stock status and reference point 
uncertainty, and forecasting uncertainty. Each plays an important role in determining an ABC for 
a given stock.   

When all important sources of uncertainty can be included in the stock assessment and 
estimation of biological reference points (BRPs), then the calculation of catch levels that achieve 
a desired level of risk is relatively straightforward.  For this situation, Shertzer et al. (2008) 
proposed an approach that estimates the catch at the maximum fishing mortality threshold 
(MFMT) or overfishing limit (OFL) reference point, its uncertainty (distribution), and 
uncertainty in future population size (distribution) and then uses the joint distribution and a pre-
specified level of tolerance (probability), P*, for exceeding the reference point to determine the 
ABC.  Implementation of the algorithm involves estimating the distribution of the both the 
MFMT and of forecasted population size. From these, the level of catch that will achieve a 
certain probability of avoiding the OFL can be chosen.  For this method to work all important 
sources of uncertainty in the joint distribution of the OFL reference point and forecasted 
population size must be known and that level of acceptable risk must be specified.  

In situations where population status and reference points can be estimated (i.e. data rich 
situations), but their associated uncertainties are incompletely described, most Councils have 
adopted a P* approach, with each Council setting different target P* values, as well as assuming 
different amounts of uncertainty in the OFL distribution. For example, the MAFMC has adopted 
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a threshold P* approach where the target P* is reduced as abundance falls below the biomass that 
supports maximum sustainable yield (BMSY), and the CV of the distribution for OFL is increased 
with increasing uncertainty in assessment results based on meta-analysis and stock-specific 
factors.   

Although many control rules have been adopted to comply with the revised Act, the relative 
performance among the methods and the level of risk associated with each have not been 
formally evaluated.  Management strategy evaluations (MSE) can provide an estimate of the 
performance of these control rules (e.g., Punt 2003).  MSEs involve simulation of an exploited 
population and its associated management regime so that the performance of different control 
rules can be evaluated by quantifying how frequently different management objectives are 
achieved. MSE is increasingly being adopted as a framework to evaluate alternative strategies for 
fisheries management (Kirkwood 1997; Butterworth and Punt 1999; Smith et al. 1999; Plagányi 
et al. 2007).  Simulation testing generally requires an “operating model” that attempts to simulate 
the population dynamics of the stock, dynamics of fishery effort, sampling of the population and 
catch, assessment, and management (Butterworth and Punt 1999; Rademeyer et al. 2007; 
Butterworth 2008).  The operating model represents a reference system in which the underlying 
“true” dynamics of the system are known, and is used to create “data sets” to which the 
management strategy is applied and the response of the reference system determined. 

In addition to the control rule being used, other aspects of the management structure can affect 
performance of the fishery management system.  Two of the challenges of using stock 
assessments in management decisions are data availability and the allocation of resources to 
conduct stock assessments in a frequent and timely manner.  The use of the most recent data 
should be critical to stock assessment model performance because estimates from the most recent 
years are often used to provide management advice.  However, extended timelines between the 
most recent data included in the stock assessments and management decision are common. Data-
management lag (DML), the time between data collection and implementation of management 
measures, is commonly two to three years and can extend longer some cases.  While DML and 
assessment timelines can strongly affect model predictions, few studies have examined their 
effects (Shertzer and Prager 2007; Brown et al. 2012; Li et al. in review) or tested approaches for 
improvements.   

Objectives 

Our objectives were to use an MSE framework to 1) characterize the performance of several 
ABC control rules under a range of life histories and fishing histories, 2) compare performance 
of management systems with different levels of assessment frequency and data-management lag, 
3) determine the effectiveness of methods for reducing DML, and 4) estimate the degree of 
autocorrelation of stock assessment estimates for use in MSEs. 

Methods 

We conducted an MSE of fishery management performance over a range of scenarios 
encompassing different life histories, exploitation histories, and levels of assessment quality.  
The simulation model is a closed-loop MSE (Butterworth and Punt 1999; Milner-Gulland et al. 
2010), implying that the important factors that affect the fishery management system are 
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included in the simulation. The MSE has three main components and was developed in AD 
Model Builder (Fournier et al. 2012). The foundation of the MSE simulation is the operating 
model, which determines the population dynamics of the stock and how data are generated.  Data 
generated in the operating model represent the true state of the population with some specified 
amount of observation error.  The operating model generated data on fishery harvests, as well as 
a fishery-independent index of abundance.  Mimicking the fishery management process, these 
data derived from the operating model were then used in the assessment model to estimate stock 
status and biological reference points.  The assessment model was a statistical catch-at-age 
(SCAA) model (Fournier and Archibald 1982), and output from the assessment was used in the 
management model to determine the catch limit using a particular ABC control rule.  A catch 
equivalent to the catch limit estimated in the management model was removed from the 
population in the operating model, without implementation error.  This simulation loop continues 
for a set number of years.  We did not include implementation error because our goal was to test 
performance of ABC control rules rather than to understand the performance of management for 
specific fisheries.  Each multiyear simulation was repeated multiple times (usually 1000-2000) 
for each scenario (e.g. life history, data quality, recruitment variability) to capture the variability 
in the population dynamics, data generation, and assessment estimation.  At the end of each run, 
the true and estimated values summarizing the population and fishery dynamics were stored and 
used to evaluate the ability of a control rule to meet multiple management objectives, and to 
quantify the amount of autocorrelation in the stock assessment error.  

 
Objective 1: Performance of ABC control rules 

Under the revised MSFCMA, ABCs must be set that limit overfishing, but limiting overfishing is 
not the only objective of fisheries management.  Managers must try to limit overfishing while 
meeting additional objectives such as maintaining high biomass and high and stable yields.  
Thus, an ideal control rule would be one that satisfies most or all of these conditions.  We 
explored the performance of eight ABC control rules. A control rule of ABC=OFL was used as a 
baseline to test the effect of using no buffer.  The other seven control rules applied different 
buffer sizes.  Six control rules were variations of the P* approach (Shertzer and Prager 2010), in 
which the distribution for the OFL was assumed to follow a lognormal distribution with different 
coefficients of variation (CVs).  We explored three variations of the P* approach with a fixed 
target P* (i.e., P* was independent of biomass) of 0.4 for CVs of 0.38, 0.7, and 1.0, and three 
variations with the same CVs but with the target P* declining as biomass falls below its BMSY 
proxy. The final control use evaluated was to set the target F at 75% of MFMT. 

We ran the model over a range of scenarios to identify factors affecting the performance of the 
eight ABC control rules.  For the baseline scenarios we explored three life histories, three 
exploitation histories, two levels of data (assessment) quality, and four levels of recruitment 
variability and recruitment autocorrelation.  The different life histories explored were ‘slow’, 
‘medium’ and ‘fast’ in which the life history speed reflects age at recruitment to the fishery, age 
at maturity, and natural mortality.  Life histories were tailored to approximate Atlantic butterfish 
(Peprilus triacanthus), summer flounder (Paralichthys dentatus) for the medium life history, and 
spiny dogfish (Squalus acanthias) for the slow life history.  For the data quality scenarios, we 
modeled a “good” and “bad” case, whereby several factors were adjusted to affect assessment 
performance. For each case we varied the CV of the observation error in the survey (lower for 
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the good scenario), the number of samples collected to generate age structured data (higher for 
the good case), and the amount of autocorrelation in the time-varying parameters (lower in the 
good scenario).  The primary performance measures we used to assess control rule performance 
were population size, fishery yield, variability in fishery yields, and probability of overfishing 
(POF).  The latter measure is the central objective that the ABC control rule is seeking to achieve.  
For most measures, we used the mean over a portion of the management period, such as the first 
or last 5 years of the management period, or over the entire management period.  The probability 
of overfishing was calculated as the proportion of years during the management period (when the 
ABC control rule is used) that F exceeded F35%, which was used as the MFMT. We summarized 
year-to-year variability in fishery yield by calculating the average of the absolute value (AAV; 
Punt 2003) of difference in yield from one year to the next across the management period.   

We ran a range of sensitivity analyses to determine if control rule performance depended on 
particular assumptions in the model.  The first set of sensitivity runs were nearly identical to the 
base scenarios, but with a gradual decline in steepness over the management period.  For these 
runs, steepness was constant, at the value for each life history during the initial period, and 
declined linearly starting in year 31 to 50% of the initial value by the final year of the run.  The 
next set of sensitivity runs used alternative limit fishing mortality rates.  Based on our life history 
parameterization, the SPR at FMSY was 0.344, 0.39, and 0.46 for the fast, medium and slow life 
histories.  Because the greatest difference between the SPR at FMSY and the assumed F35% 

occurred for the slow history, we ran the model for this life history with Flim = F46%.  The final set 
of sensitivity analyses were restricted to the medium life history and explored several methods 
for specifying year-specific ABCs. The ABC could be constant over the assessment interval, 
year-specific based on using projections, or “phased in” gradually.  
 
Objective 2:  Assessment frequency and data-management lag 
 
Combinations of data management lag (DML) and assessment interval were tested under a 
factorial design of scenarios that considered alternative assumptions about data quality, stock-
recruitment variability, exploitation history, and life history.  Alternative management models 
were described by combinations of stock assessment interval (assessments every one, two, three, 
five, seven and ten years) and DML (of one, two and three years).  Each management 
combination was tested under a range of scenarios of good and poor data quality, fast and slow 
life history, and high and low variable recruitment variability to represent a broad range of 
potential fisheries. We modeled good and poor data quality scenarios that differed in difference 
combinations of observation error variance and level of process error in the operating model. 
Parameters of the operating model were chosen to represent species with a fast and a slow life 
history.  Life histories were tailored to approximate summer flounder for the fast life history and 
spiny dogfish for the slow life history.  The fast life history of the summer flounder included 
early recruitment into the fishery and early maturation, while the slow life history of the spiny 
dogfish represented lower natural mortality and late recruitment and maturation. Exploitation 
scenarios were implemented by including a fishing mortality multiplier (F = 0.5, 1.0, 2.5 x FMSY 
for the light, moderate, or heavy exploitation) in the pre-management portion to affect the 
abundance at the beginning of the management period. Preliminary model testing showed little 
difference between exploitation histories; therefore, the 1000 simulations were summarized 
across exploitation history with the first 333 runs representing an underfished stock, the second 
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333 runs representing a fully fished stock, and the final 334 runs representing an overfished 
fished stock.   
 
Objective 3: Methods for reducing data-management lag 
 
We modified the model used for Objective 2 to test three methods of reducing DML relative to 
two controls.  The specific approaches examined were: 1) a control with one year of DML,  2) 
using age-composition data for the terminal year of the survey, but no age-composition for the 
catch with one year of DML, 3) survey age-composition data, but reduced quality age-
composition data for the fishery in the terminal year with one year of DML, 4) reduced quality 
data for both the survey and catch age-compositions in the terminal year of the assessment with 
one year of DML, and 5) a control with two years of DML. The reduced quality age-composition 
approaches represented cases in which size-at-age of the stock is variable such that using prior 
years’ data would inject additional error into the age composition data.  For these approaches, 
length data are available for the most recent year and size-age data from previous years would be 
used to convert length composition to age-composition.  If size-at-age of the stock does not vary 
over time, then use of previous years’ data should not result in lower quality age composition 
information.  The two controls used full age-composition data for both the survey and the catch 
with one and two year DMLs.  Each data lag reduction method was tested under scenarios with 
good and poor quality data, fast and slow life histories, and high and low recruitment variability 
to represent a broader range of fisheries, similar to those for Objective 2. 

Objective 4: Assessment Error Autocorrelation 

We ran the MSE model over a range of scenarios to identify factors affecting the level of 
autocorrelation in the estimation error from the assessment model.  We explored three life 
histories, three exploitation histories, two management scenarios, and two levels of data quality 
and recruitment variability.  Exploitation scenarios included light, moderate, or heavy 
exploitation in the pre-management portion to determine the abundance at the beginning of the 
management period. We included the same life histories as were modeled in Objective 1.  For the 
data quality scenarios, we modeled a “good” and “poor” case, whereby several factors were 
adjusted to affect assessment performance. For each case we varied the CV of the observation 
error in the survey (lower for the good scenario), the number of samples collected to generate 
age structured data (higher for the good case), and the amount of autocorrelation in the time-
varying parameters (lower in the good scenario).  In addition, we explored two levels of 
recruitment variability. We ran 1000 iterations for each scenario.  At the end of each run, the 
terminal estimate of biomass and recruitment from each assessment was stored along with the 
true values, and we calculated the amount of lag-1 autocorrelation in the error of biomass and 
recruitment estimates using a maximum likelihood approach.   

Results 

Objective 1: Performance of ABC control rules 

We evaluated alternative ABC harvest control rules over a range of scenarios to determine their 
effectiveness at achieving a suite of management objectives.  Across the scenarios explored, the 
control rules that used a buffer when setting the ABC (< OFL) were able to limit the frequency 
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of overfishing, with each achieving a probability of overfishing (POF) below the 0.5 threshold 
required for federal U.S. management.  On average, the more conservative control rules (larger 
buffers) resulted in a lower POF overall (often < 0.3 yr-1), high long-term biomass, similar or 
slightly higher long-term yield, and more stable yield compared to the less conservative control 
rules.  Thus, the more conservative control rules we explored appear well-suited to meet a range 
of long-term fisheries management objectives. 

We explored eight control rules in our work, seven of which utilized a buffer when setting the 
ABC.  The control rules that achieved the lowest probabilities of overfishing explored in this 
analysis utilized the biomass-dependent target P* with the high CVs for the OFL distribution, 
although the fixed P* control rules with a CV of 0.7 and 1.0, and 75% of MFMT also generally 
achieved POF at or below 0.3 for many of the scenarios. This work is in agreement with other 
work with regard to the effectiveness of threshold-based control rules (Punt et al. 2008; Irwin et 
al. 2008). Using a fixed P* of 0.4 with CVs ≥ 0.38 or the approach using 75% of Flim as the 
target F were also effective control rules for limiting overfishing, but often resulted in slightly 
lower long-term average yield than the biomass-based control rules. 

ABCs must be set for a number of years in the future, depending on the length of the interval 
between stock assessments.  Setting a fixed ABC in the future or using projections had little 
effect on the probability of overfishing, population biomass, and fishery yield for both the two 
and five year assessment intervals.  AAV of the catch was influenced by whether or not 
projections were done, and was lower when the ABC was fixed over the assessment interval.  
Using a weighted average of successive ABCs also resulted in a lower catch AAV than the other 
methods, but for longer intervals with high recruitment variability this approach resulted in a 
higher frequency of overfishing (POF > 0.5).  If having more stable catches is an important goal 
for a fishery, then fixing the ABC over the assessment interval may be more effective than using 
projections to set year-specific ABCs. 

Objective 2: Assessment frequency and data-management lag 

We found substantial differences in management performance as a result of assessment 
frequency and DML across a range of scenarios.  Specifically, increases in DML and assessment 
interval resulted in decreases in both the median catch and biomass (1-8% yr-1) and increases in 
POF. Increases in DML caused larger changes than increases in assessment intervals, on average, 
for all performance metrics except probability of overfishing.  The effect of DML and 
assessment interval was larger in the poor data scenarios, and the effects of DML and assessment 
interval varied among the life history and data quality scenarios.  For example, there was about a 
twofold increase in the effects of DML and assessment interval between the good to poor data 
scenarios. Larger changes in performance metrics were evident with the fast life history 
compared to slow life history scenarios, but effects varied across performance metrics.      

Objective 3: Methods for reducing data management lag 
 
Lag reduction methods can be successful in reducing the effects of DML and meeting 
management goals.  Overall, data lag reduction methods had the largest effects when the data 
quality was relatively poor and the smallest effects when data quality was high.  Data lag 
reduction methods that used age-composition information from the survey, but no or reduced 
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information from the catch in the terminal year of the stock assessment, achieved performance 
that was similar to using full data in the terminal year.  Life history, data quality, and assessment 
interval all played important roles in the effects of DMLs and effectiveness of data lag reduction 
methods.  Data lag reduction methods provided benefits over the status quo in almost all cases. 
However, the difference in performance was smallest in the good data quality scenarios.  
Additionally, the benefits of using data lag reduction methods were greatest with longer 
assessment intervals. 

Objective 4: Assessment error autocorrelation 

We estimated the amount of temporal autocorrelation in errors of estimated biomass and 
recruitment from SCAA stock assessment models over a series of scenarios spanning life 
histories, exploitation levels, recruitment variability, and data quality.  Autocorrelation in the 
error in biomass estimates (߶ௌ) was positive and relatively high, with median estimates ranging 
between 0.6 and 0.9.  Estimates were highest for the slow life history and lowest for the fast life 
history.  Exploitation level also affected the amount of autocorrelation, with higher values for 
lightly exploited populations.  On average, however, estimates of ߶ௌ did not change over time as 
more data were included in the assessment, and were independent of whether or not a harvest 
policy was applied.  In contrast, recruitment variability and data quality had relatively minor 
effects on autocorrelation of errors.  

Conclusions and Recommendations  

Identifying robust harvest control rules is essential for effective fisheries management in the face 
of uncertainty.  This work showed that using even modest buffers when setting the ABC are 
generally effective at limiting overfishing, in the sense that the limit fishing mortality rate is not 
frequently exceeded, but that more conservative control rules may result in higher average 
biomass and yield long term.  In addition, the more conservative options provide similar long-
term benefits to the fishery while having a low risk of overfishing, and allow more rapid 
recovery of depleted populations.  The results of this work may be used as a guide for managers 
in the selection of an appropriate ABC for their stock, and the flexible MSE framework 
developed here may be used to explore a wider range of control rules under different conditions 
or for particular case studies.   

We found substantial differences in management performance as a result of assessment 
frequency and DML across a range of scenarios.  Specifically, increases in DML and assessment 
interval resulted in decreases in both the median catch and biomass. Increases in DML caused 
larger changes relative to increases in assessment intervals, on average, for all performance 
metrics except the probability of overfishing and were especially noticeable in the poor data 
scenarios.  The effects of DML and assessment interval on the performance metrics varied 
among the life history and data quality scenarios.  For example, for average catch the effects of 
DML and assessment interval were relatively low for the fast life history and good data 
scenarios, with average catches decreased by 2% and 1%, respectively, but were magnified in the 
poor data scenario to a 4% and 3% decrease in catch with an additional year of DML or 
assessment interval, respectively. Larger changes in performance metrics were evident with the 
fast life history compared to slow life history scenarios, but effects varied across performance 
metrics.  Methods for reducing DML by including years with partial data in the stock assessment 
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performed reasonably well in improving management performance.  One research priority is, 
therefore, continued development and testing of techniques to reduce DML.   
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Abstract 

In the U.S., recent changes in fisheries legislation have altered how fisheries management actions 
are developed.  Under the revised Magnuson-Stevens Fishery Conservation and Management 
Reauthorization Act of 2006 (MSFCMRA), acceptable biological catch limits (ABC) must be set 
to limit overfishing, using scientific uncertainty as a guide in the process.  In this paper we 
developed a simulation model to evaluate a range ABC control rules to determine their relative 
performance at limiting overfishing and achieving other common fishery management 
objectives.  We explored a range of scenarios to determine robustness of a control rule to 
different situations, including a range of life histories, exploitation histories, and data and stock 
assessment quality.  Across the scenarios explored, the control rules that used a buffer when 
setting the ABC were able to limit the frequency of overfishing, with a probability of overfishing 
below the 0.5 threshold required for federal U.S. management.  Using even modest buffers when 
setting the ABC are generally effective at limiting overfishing, in the sense that the limit fishing 
mortality rate is not frequently exceeded, but that more conservative control rules may result in 
higher average biomass and yield long term.  In addition, the more conservative options provide 
similar long-term benefits to the fishery while having a low risk of overfishing, and allow more 
rapid recovery of depleted populations.   

 

Keywords: Acceptable biological catch, harvest control rules, management strategy evaluation 
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Introduction 

In the U.S., recent changes in fisheries legislation have altered how fisheries management actions 
are developed.  The Magnuson-Stevens Fishery Conservation and Management Reauthorization 
Act of 2006 (MSFCMRA) aims to maintain healthy U.S. fisheries by, among other things, 
limiting overfishing.  In the revised National Standard 1 under the, MSFCMRA the Scientific 
and Statistical Committees (SSC) of each of the eight regional management Councils have been 
tasked with recommending acceptable biological catch (ABC) levels.  National Standard 1 
suggests that scientific uncertainty be used to guide the selection of an ABC by achieving a 
specific, acceptable probability of overfishing (Federal Register, 2009).  Importantly, the ABCs 
will constrain the annual catch limit (ACL) that must be set by the Council as they cannot 
recommend a catch level above the ABC recommended by its SSC.  Many control rules to 
manage fisheries have been developed and tested (reviewed in Deroba and Bence 2008), yet few 
of these satisfy the desired properties of the revised MSFCMRA.  In particular, achieving a 
specified probability of overfishing has generally not been an explicit criterion for control rules.   

For stocks where stock assessments are possible (i.e., data-rich), the overfishing limit (OFL; the 
catch at Flim that defines overfishing) is estimated using estimates from the terminal year of the 
model, and often for a number of years in the future using stochastic projections, producing a 
distribution for possible OFL values over time.  It is difficult to capture all of the possible 
sources of uncertainty inherent in the estimation and projection processes, such that the 
uncertainty in the OFL is likely underestimated.  For example, Ralston et al. (2011) found that 
the uncertainty in population biomass estimated within an assessment is often less than the 
uncertainty in biomass estimated among repeated assessments for the same stock.   

One approach to account for this underestimation of uncertainty is to estimate the uncertainty in 
the OFL distribution outside the stock assessment.  In several regions of the U.S., the point 
estimate of the OFL in a given year is treated as the median of a lognormal distribution, with a 
coefficient of variation (CV) that is specified by the SSC (PFMC 2010, MAFMC 2011).  Given a 
distribution for the OFL, the next step is to select a target probability of overfishing, or P* 
(Shertzer et al. 2008).  For example, with a P* of 0.4, the 40th percentile of the OFL distribution 
would be selected as the ABC.  Using this process, the buffer size between the ABC and the OFL 
increases as the target P* decreases and as the assumed CV of the OFL distribution increases 
(Figure 1).  

The P* approach outlined above may be applied differently for different stocks, depending on 
the circumstances.  For example, larger CVs may be selected for stocks with greater uncertainty 
in the assessment, such as a strong retrospective pattern (Mohn 1999).  Alternatively, the target 
P* might be fixed for a stock, or it could be varied in response to the changes in the estimated 
biomass, with a lower P* for a more depleted stock (Figure 1). Alternative approaches for 
implementing the P* approach have been adopted across the U.S., but their relative performance 
has not been tested. 

In this paper we developed a simulation model to evaluate a range ABC control rules to 
determine their relative performance for achieving common fishery management objectives.  We 
explored a range of scenarios to determine robustness of a control rule to different situations, 
including a range of life histories, exploitation histories, and data and stock assessment quality.  
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For each control rule we measured performance in variety of ways.  One of the primary goals of 
the MSFCMA is to avoid overfishing, and how well a control rule achieves this objective is an 
essential measure of its utility.  ABC control rules must also balance the trade-offs between risk 
and reward because minimizing the probability of overfishing also minimizes yield.  Thus, 
control rule performance was evaluated with respect to its impact on other fishery metrics in 
addition to probability of overfishing (Wilberg et al. 2011).   

Methods 

To test the performance of alternative ABC control rules, we conducted a management strategy 
evaluation (MSE) over a range of scenarios encompassing different life histories, exploitation 
histories, and levels of assessment quality.  The simulation model is a closed-loop management 
strategy evaluation (Butterworth and Punt 1999; Butterworth et al. 2010; Milner-Gulland et al. 
2010) with three main components, and was developed in AD Model Builder (Fournier et al. 
2012). The foundation of the MSE simulation is the operating model, which determines the 
population dynamics of the stock and how data are generated.  Data generated in the operating 
model are based on the true state of the population with some specified amount of observation 
error.  The operating model generated data on fishery harvests, as well as a fishery-independent 
index of abundance.  These data were then used in the assessment model to estimate stock status 
and biological reference points.  The assessment model was an SCAA model (Fournier and 
Archibald 1982), and output from the assessment was used in the management model to 
determine the catch limit using a particular ABC control rule.  The catch limit estimated in the 
management model was removed from the population, without implementation error, and the 
simulation loop continues for a set number of years.  We did not include implementation error 
because our goal was to test performance of ABC control rules rather than to understand the 
performance of management for specific fisheries.  This process was repeated 1000 times for 
each scenario (e.g. life history, data quality, recruitment variability) to account for the variability 
in the population dynamics, data generation, and assessment estimation.  At the end of each run, 
the true and estimated values summarizing the population and fishery dynamics were stored and 
used to evaluate the ability of a control rule to meet multiple management objectives.  

Operating, Assessment, and Management Models 

The population dynamics in the operating model followed an age-structured model (Quinn and 
Deriso 1999) with the equations governing these dynamics in Table 1 and definitions of the 
equation state variables in Table 2.  Equations used in the model are referenced by their number 
in Table 1, such that the formula for calculating numerical abundance-at-age is referred to as Eq. 
T1.1.  The population began at unfished equilibrium abundance at age in year 1 of the 
simulation.  Annual abundance of recruited ages was determined from the abundance of that 
cohort the previous year, decreased by continuous natural and fishing mortality (Eq. T1.1).  
Fishing mortality at age was the product of fishing intensity of full selected ages and selectivity 
at age, and natural mortality was independent of age, but a varied over time following an 
autocorrelated process on the log scale.  Total mortality at age was the sum of fishing and natural 
mortality. 

Recruitment followed the Beverton-Holt stock-recruit relationship, with bias-corrected 
lognormal and autocorrelated deviations (Eq. T1.2).  Parameters controlling the degree of 



 

14 

autocorrelation and variability in recruitment (Table 3) were based on the recruitment meta-
analysis of Thorson et al. (2014). Total spawning biomass in a given year was calculated by 
summing the product of the proportion mature, weight at age and abundance at age over all 
recruited age classes (Eq. T1.3).  Weight at age was an allometric function of length at age, 
which followed a von Bertalanffy growth function (Eqs. T1.5 and T1.6).  The proportion mature 
at age was calculated using a logistic function (Eq. T1.7).  Length, weight, and maturity at age 
were fixed for a given species life history.   

The model contained a single fishery with a logistic selectivity function (Eq. T1.8).  The 
selectivity ogive varied over time as the parameter that determines the age at 50% selectivity 
varies annually in an autocorrelated manner (Eq. T1.8), as selectivity in a fishery can vary in 
response to changing regulations, fishing practices, or changes in growth, although the source for 
the changes was not modeled explicitly.  Because both natural (M) and fishing mortality (F) 
occurred continuously throughout the year, catch was calculated using the Baranov catch 
equation (Quinn and Deriso 1999; Eq. T1.9).      

Each model run was divided into two periods, the initial and management periods.  The initial 
period included the first 30 years for the simulation, while the management period was the 
remaining 35-45 years, depending on the life history of the stock.  The population started in an 
unfished state.  A single fishery developed during the first 30 years following a fixed pattern of 
total fishing mortality .  F increased linearly until year 15, and was constant at its peak value for 
the remainder of the initial period.  The peak fishing intensity (F = 0.5, 1.0, 2.5 × FMSY for the 
light, moderate, or heavy exploitation scenarios) and realized patterns of recruitment, fishery 
selectivity, and natural mortality during this period determined the abundance and age structure 
of the population at the start of the management period.  

At the start of management period (year 31) the population was first assessed using data 
generated during the initial period, starting in year 10, and with a 1-year lag between the last year 
of the data collected and when the assessment is done.  The data used in the assessment were the 
fishery catch (both total and proportions-at-age) and a fishery-independent index of abundance 
(both total and proportions-at-age).  These data sets were generated by applying observation 
error to the true values using lognormal errors for the total index and catch and multinomial 
distributions for the age compositions (Eqs. T1.10 - T1.14).  The amount of observation error in 
the generation of the data varied to explore the interactions between data quality and the 
autocorrelation in assessment estimates.   

The time series of catch and survey data were input into the SCAA model to estimate the 
abundance at age, fishing mortality rates in each year, and reference points for management.  The 
estimated parameters were the abundance at age in the first year of the SCAA, recruitments and 
fishing mortality rates (across years), fishery selectivity parameters, survey selectivity 
parameters, and survey catchability.  The SCAA used a maximum likelihood approach to 
estimate the parameters.  Time-varying parameters that are estimated (survey catchability and 
age at 50% selectivity in the fishery) are assumed constant over time in the assessment model.  
Natural mortality was assumed to be constant over age and time at the mean value for the given 
life history (Table 3).  All other required SCAA inputs (i.e., maturity- and weight-at-age) are set 
to the true values specified in the operating model.  The SCAA model also estimated the 
spawning potential ratio (SPR) – based reference points to determine stock status and target 
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catch (NEFSC 2002).  The limit fishing mortality rate was specified at F35% for all life histories 
because this is a commonly used limit fishing mortality rate in the U.S.  F35% did not exactly 
correspond to the fishing mortality rate that achieved maximum sustainable yield for any of the 
life histories. The spawning biomass reference point was calculated by multiplying the spawning 
stock biomass-per-recruit by the mean estimate of recruitment over the time series (NEFSC 
2002; Haltuch et al. 2008).    Because maturity and weight at age were fixed at the true values, 
the SPR-based reference points varied across assessments based on the estimated fishery 
selectivity and the estimated mean recruitment.  Assessments occurred every two years starting 
in year 31.     

For the baseline scenarios F35% was the assumed to be the limit fishing mortality rate across life 
histories.  Punt et al. (2008) showed that the target SPR% is tightly correlated with the steepness 
of the stock-recruitment relationship, such that selecting a particular SPR% for a stock implies a 
certain level of steepness.  For an SPR of 35%, the corresponding steepness is approximately 
0.89 which differs from the assumed steepness for some of the life histories we explored (Table 
3).  However, because an SPR of 35% is widely used as a proxy for many species with likely a 
range of steepness values, we felt this was a reasonable assumption.  Additionally, managers 
never know the true steepness for a stock, which is one of the reasons for using SPR-based 
reference points.  However, we also explored the effects of using a different SPR targets as a 
sensitivity analysis (described further in the Sensitivity Runs section below).   

In the management model, a harvest control rule was applied using the abundance at age 
projected one year past the terminal year and the F35% from the assessment model to determine 
the ABC using the specified control rule.  The projected abundance at age was calculated using 
the terminal abundance, the assumed M and estimated F at age in the terminal year, with 
recruitment assumed equal to the mean level over the previous 10 years.  Under the baseline 
model runs the ABC was constant for the interval between assessments (2 years), but we also 
explored the effects of using projections to set year-specific ABCs for the two-year interval and 
over a longer interval of five years.  When projections were used, the same deterministic 
approach was used to calculate abundance at age in the projected year, assuming F = F35% in all 
years after the terminal year.  Note that this approach ignores the changes in abundance that 
might occur by setting the ABC < OFL, which would result in F < F35% with accurate estimates 
of abundance.  As a result, the deterministic projections provided more conservative estimates of 
the OFL.  The estimated ABC is then removed from the population the following year, and the 
resulting F is calculated using the Baranov catch equation (Quinn and Deriso 1999).  

Control rules 

We explored the performance of eight ABC control rules (Table 4).   One control rule was used 
as a baseline to test the effect of using no buffer when setting the ABC (ABC = OFL).  The other 
seven control rules applied different buffer sizes when, with one doing so by setting the target F 
at 75% of Flim.  The remaining six control rules were variations of the P* approach (Shertzer and 
Prager 2008), in which the distribution for the OFL was assumed to follow a lognormal 
distribution with different CVs.  We explored three variations of the P* approach with a fixed 
target P* (i.e., P* was independent of biomass) of 0.4 for CVs of 0.38, 0.7, and 1.0, and three 
variations with the same CVs but with the target P* declining as biomass falls below S35%, (i.e., 
varying P* control rules; Figure 1). 
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Parameterization and Model Runs 

We ran the model over a range of scenarios to identify factors affecting the performance of ABC 
control rules.  For the baseline scenarios we explored three life histories, three exploitation 
histories, two levels of data (assessment) quality, and four levels of recruitment variability and 
recruitment autocorrelation (Table 5).  The different life histories explored were ‘slow’, 
‘medium’ and ‘fast’ (Table 3).   The slow life history had relatively slow growth, late maturation, 
and low steepness.  In contrast, the fast life history had rapid growth, early maturation, and high 
steepness.  The medium life history is between the slow and fast life histories.  We used different 
aggregate age gins for the maximum age for each life history (7, 12, and 20 years for the fast, 
medium and slow life histories, respectively). Additionally, the mean natural mortality rate  and 
steepness of the stock-recruitment function differed with life history.  All other life history 
parameters were either fixed across life histories (L∞ and the length-weight parameters b and c) 
or determined from the other parameters.  The mean natural mortality rate was used to determine 
the growth rate, k = M/1.5, and age at 50% maturity, m50% =  M / 1.4 (Charnov and Berrigan 
1991; Charnov et al. 1993; Frisk et al. 2001), which then determined the initial age at 50% 
selectivity in the fishery ( sf,50%(t=1) = m50%).   For the survey, age at 50% selectivity was lower 
than that of the fishery, ss,50% = 0.75 sf,50%(t=1), and was rounded down to the nearest integer to 
determine the age at recruitment to the population, ܽோ ൌ උݏ௦,ହ଴%ඏ .   

For the data quality scenarios, we modeled a “good” and “bad” case, whereby several factors 
were adjusted to affect assessment performance (Table 5). For each case we varied the CV of the 
observation error in the survey (lower for the good scenario), the number of samples collected to 
generate age structured data (higher for the good case), and the amount of autocorrelation in the 
time-varying parameters (lower in the good scenario).  In addition, we explored two levels of 
recruitment variability and two levels autocorrelation, resulting in four total runs.  The levels of 
variability and autocorrelation based on the meta-analysis of Thorson et al. (2014).   

Performance Measures 

We ran 1000 iterations for each scenario.  At the end of each run, a range of performance 
measures were calculated to summarize the ability of each control rule to meet a suite of 
management objectives (Table 6). The primary performance measures we used to assess control 
rule performance were population size, fishery yield, variability in fishery yields, and frequency 
of overfishing.  For most measures, we used the mean over a portion of the management period, 
such as the first or last 5 years of the management period, or over the entire management period.  
The probability of overfishing was calculated as the proportion of years during the management 
period that F exceeded F35%. We summarized year-to-year variability in fishery yield by 
calculating the average of the absolute value (AAV; Punt 2003) of difference in yield from one 
year to the next across the management period.   

Sensitivity Analyses 

We ran a range of sensitivity analyses to determine if control rule performance depended on 
particular assumptions in the model. For the baseline model runs we explored two levels of 
assessment uncertainty (low / high), two levels of R and two levels of R for each life history 
and exploitation history (runs 1-8 in Table 5).  For the baseline runs, steepness was fixed over 
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time at the values for each life history, the ABC was constant during a 2-year interval between 
assessments, and the limit fishing mortality rate (Flim) was F35%.   

The first set of sensitivity runs were nearly identical to the base scenarios, but with a gradual 
decline in steepness over the management period (runs 9-16 in Table 5).  For these runs, 
steepness was constant, at the value for each life history (Table 3) during the initial period, and 
declined linearly starting in year 31 to 50% of the initial value by the final year of the run.    

The next set of sensitivity runs used alternative limit fishing mortality rates.  Based on our life 
history parameterization (Table 3), the SPR at FMSY was 0.344, 0.39, and 0.46 for the fast, 
medium and slow life histories.  Because the greatest difference between the SPR at FMSY and 
the assumed F35% occurred for the slow history, we ran the model for this life history with Flim = 
F46% (runs 17-20 in Table 5). 

The final set of sensitivity analyses (runs 21-52 in Table 5) were restricted to the medium life 
history and explored several methods for specifying year-specific ABCs. The ABC could be 
constant over the assessment interval, year-specific based on using projections, or “phased in” 
gradually.  Under the phasing in approach, the ABC for a given year was a weighted average of 
the current estimate (ABCcur(t) ) and the estimated ABC from the final year of the previous 
assessment period (ABCprev).  For example, when setting multi-year ABCs in years t, t+1, etc., 
ABCprev is the ABC that was set in year t-1.  We assumed equal weight when averaging the 
ABC, such that ABC(t) = 0.5 *ABCcur(t) + 0.5 * ABCprev.   

Results 

Because of the large number of scenarios explored and the range of performance measures 
calculated for each run, a detailed description of the model results for each run is not feasible.  
We provide a summary of the general patterns observed across runs here, and results of all of the 
full model runs are presented in Appendix A.  

Baseline Model Runs  

Across the baseline scenarios (runs 1-8 in Table 5), control rules that applied a buffer between 
the ABC and the OFL resulted in a probability of overfishing  (POF) below the 0.5 threshold for 
most model runs (Figure 2).  Although each control rule was able to limit overfishing (POF < 
0.5), the frequency of overfishing varied widely across control rules.  For the light and moderate 
exploitation histories, the population biomass remained close to the SMSY levels on average for 
many of runs, such that the control rules with a varying  P* (Figure 1) were not triggered that 
often, and the target P* remained at or close to 0.4.  As a result, the probability of overfishing 
(POF) for the different P* approaches resulted more from the assumed CV and less on whether or 
not P* was fixed or varied in response to biomass.  For the scenarios with good data quality, the 
interquartile range (IQR) of estimates of POF were below 0.5 for the P* approaches using the 
larger CVs (0.7 and 1.0).  For the CV of 0.38, some of the IQRs extended above 0.5 threshold for 
POF, particularly when P* was fixed at 0.4.  For the heavy exploitation scenario, the varying P* 
control rules resulted in a POF consistently below 0.4, and in some cases below 0.2 for the larger 
assumed CVs.  In addition for the heavy exploitation scenario, the POF decreased going from the 
fast to the slow life history for the threshold P* control rules because the fast life history rebuilt 
more rapidly to a biomass level above the threshold where P* is reduced.  Across life histories 



 

18 

and exploitation scenarios, the control rule that used a target F of 75% of Flim performed similar 
to the P* approaches using the fixed target P* with CVs of 0.7 and 1.0 (Figure 2, top). 

Decreasing the quality of data used in the stock assessment resulted in an expansion of the range 
of POF estimate across scenarios (Figure 2, bottom).  In some cases, this resulted in the IQR 
extending above the 0.5 threshold, particularly for the fixed P* approaches with CVs of 0.38 and 
0.7.  While the majority of POF estimates remained well below 0.5 across the life history and 
exploitation histories explored, only the threshold P* approach (for all CVs) had IQR 
consistently below 0.5 (Figure 2, bottom).   

The control rules generally resulted in long-term biomass (calculated as the mean of the final 
five years) close to SMSY across life histories and exploitation histories (Figure 3).  Biomass 
estimates were 20-40% higher for the most conservative control rules compared to the least 
conservative control rule explored (ABC = OFL).  Populations that were overfished were 
generally able to rebuild over the management period, although population recovery was 
considerably slower for the slow life history.  Within 5 and 15 years the fast and medium life 
histories were able to rebuild to near the biomass reference point (i.e., approximately double in 
size), but doubling time for the slow life history took considerably longer (25+ years) across 
control rules (Table A1).  Rebuilding was fastest for the varying P* control rules and was also 
faster for the fixed control rules that imposed larger buffers between the ABC and OFL.  

The average long-term yield (the average in the final 5 years) was fairly similar across control 
rules for a given life history and exploitation history  (Figure 4).  However, average yield during 
the first five years, varied across control rules depending on the exploitation scenario.    The 
short-term yield was positively related to POF across control rules. In contrast, long-term yield 
was similar across all POF for the fast life history and was negatively related to POF for the 
medium and slow life histories (Figure 5). The average fishing intensity (F / Flim) and the AAV; 
of yield for each control rule increased linearly for the increasing POF across scenarios, although 
the increase was less pronounced for the catch AAV (Figure 6).  

For the baseline scenarios the relative performance of each control rule at limiting overfishing 
was similar across the different levels of stock assessment uncertainty, R and R explored, but 
other performance measures were affected by these parameters, most notably the average catch 
(Table A1).  Average catch decreased as assessment uncertainty, R and R increased, with the 
lowest catches occurring for the high assessment uncertainty run with R = 1.25 and R = 0.44 
(Figure 7).  While the specific parameterization had a large impact on some of the performance 
measures, the relative performance of each control rule was consistent across scenarios (Figure 
7; Table A1).   

Sensitivity Runs 

For each life history and exploitation history we evaluated the sensitivity of control rule 
performance for different model parameterizations (Table 5).  For the light and moderate 
exploitation scenarios, a gradual decline in steepness had little impact on the relative 
performance of the control rules, as the population biomass for each life history started at high 
levels when the decline started.  For the heavy exploitation scenario, both the fast and medium 
life histories recovered rapidly enough that again the change in steepness had a small effect on 
the performance measures.  For the heavily exploited slow life history, however, there was a 
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decline in overall biomass and yield at the end of the management period, but the control rules 
that used buffers when setting the ABC were still able to keep the probability of overfishing 
below the 0.5 threshold for the majority of runs (Table A1).   

An additional sensitivity run explored a different limit SPR% for the slow life history.  For this 
run we used the SPR% that corresponded to the deterministic estimate of FMSY, which was F46% 
in this case (Table 3).  Changing the value for Flim did not alter the relative control rule 
performance with respect to overfishing frequency, but the lower target F did result in higher 
biomass on average, and slightly reduced yield.  Using a different limit SPR% did impact the 
relative performance of the control rules with respect to long-term yield.  For a limit SPR of 
35%, the more conservative control rules resulted in higher long-term yield, on average (Figure 
4).  In contrast, long-term yield was similar across control rules using a limit SPR of 46% 
(Figure 8). 

For the base line model runs the ABC calculated from a control was fixed for a 2-year interval 
between stock assessments.  We evaluated different approaches for setting the ABC over this 
interval, and also how the length of the interval impacted control rule performance.  For these 
runs a subset of control rules were selected: ABC = OFL, ABC set using the threshold P* 
approach with an assumed CV for the OFL distribution of 0.7, and a fixed P* of 0.4 with an 
assumed CV for the OFL of 0.38.  For all the projection scenarios explored, POF varied more 
across control rules being tested than across the different projections methods used to calculate 
the catch for a given control rule. In general, POF was similar across projection scenarios, but the 
exception to this pattern occurred when the ABC was phased in with a 5 year assessment interval 
when recruitment variability was high (Figure 9). ABC averaging tended to result in somewhat 
higher POF than the other approaches, particularly when combined with a five year assessment 
interval.  Although the POF was relatively insensitive across the projection scenarios, the AAV of 
the catch was sensitive to the different approaches.  Overall, catch variability was lower when 
projections were not used.  Catch variability also decreased with increasing length between 
assessments and when ABC averaging was used (Figure 10).  

Discussion 

We evaluated alternative ABC harvest control rules over a range of scenarios to determine their 
effectiveness at achieving a suite of management objectives.  Under the revised MSFCMA, 
ABCs must be set that limit overfishing, but limiting overfishing is not the only objective of 
fisheries management.  Managers must try to limit overfishing while meeting additional 
objectives such as maintaining high biomass and high and stable yields.  Thus, an ideal control 
rule would be one that satisfies most or all of these conditions.  Across the scenarios explored, 
the control rules that used a buffer when setting the ABC (< OFL) were able to limit the 
frequency of overfishing, with a probability of overfishing POF below the 0.5 threshold required 
for federal U.S. management.   The more conservative control rules (larger buffers) resulted in a 
lower POF overall (often < 0.3), high long-term biomass, similar or slightly higher long-term 
yield, and more stable yield compared to the less conservative control rules, on average.  Thus, 
the more conservative control rules we explored appear well-suited to meet a range of long-term 
fisheries management objectives. 

We explored eight control rules in this analysis, seven of which utilized a buffer when setting the 
ABC.  The control rules that achieved the lowest probabilities of overfishing explored in this 
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analysis utilized the biomass-dependent target P* with the high CVs for the OFL distribution, 
although the fixed P* control rules with a CV of 0.7 and 1.0, and 75% of Flim generally achieved 
POF at or below 0.3 for many of the scenarios. This work is in agreement with other work with 
regard to the effectiveness of threshold-based control rules (Punt et al. 2008; Irwin et al. 2008). 
Using a fixed P* of 0.4 with CVs ≥ 0.38 or the approach using 75% of Flim as the target F were 
also effective control rules for limiting overfishing, but often resulted in slightly lower long-term 
average yield than the biomass-based control rules.  

Although the long-term average yield of the more conservative control rules was similar to the 
less conservative control rules, the short-term effects on yield depended on the life history and 
exploitation history.  Yield during the first few years of control rule implementation was lower 
for the more conservative options, resulting in a lower yield over the entire time period the 
control rule was applied.  However, in our medium and slow life history scenarios, the more 
conservative control rules achieved higher long-term average yield than the other control rules.  
Beyond yield, there may be additional benefits to the more conservative options (i.e., more rapid 
growth for depleted populations), but managers must balance short-term and long-term trade-offs 
for a given fishery.  

A second caveat associated with the long-term yield predictions for the conservative control 
rules is that this result might not hold for all situations.  For the life histories modeled in this 
study, the peaks of the stochastic yield curves were relatively flat for range of F values around 
FMSY (Figure 11).  Control rules that that used larger buffers resulted in lower F values that were 
still within the range of peak yield on the stochastic yield curve.  For species with less flat yield 
curves, the long-term yield may be lower for more conservative control rules. In addition, the 
target SPR% can impact the relative performance of a control rule with respect to long-term 
yield (Figure 4 compared to Figure 8).  For example, using a target SPR% that is below the true 
SPR% at MSY with conservative control rule could result in a reduction in average long-term 
yield (i.e., being in the ascending portion of the yield curve).  Managers therefore would benefit 
from the consideration of the interactions between the shape of the stochastic yield curve and the 
management targets (i.e., SPR%) for a given stock when deciding on how conservative the 
control rule should be for that species. The control rules we explored here could also have an 
effect on the shape of the yield curve (Irwin et al. 2008), and future work will explore the yield 
curve shape across control rules.   

ABCs must be set for a number of years in the future, depending on the length of the interval 
between stock assessments.  Setting a fixed ABC in the future or using projections had little 
effect on the probability of overfishing, population biomass, and fishery yield for both the two 
and five year assessment intervals.  AAV of the catch was influenced by whether or not 
projections were done, and was lower when the ABC was fixed over the assessment interval.  
Using a weighted average of successive ABCs also resulted in a lower catch AAV than the other 
methods, but for longer intervals with high recruitment variability this approach resulted in a 
higher frequency of overfishing (POF > 0.5).  If having more stable catches is an important goal 
for a fishery, then fixing the ABC over the assessment interval may be more effective than using 
projections to set year-specific ABCs.    

The relative performance of the control rules was generally robust across the range of sensitivity 
runs explored in this work, but there may be circumstance where their relative performance 
breaks down.  Our goal in this work was to obtain a general understanding of control rule 
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performance, but an expansion of the sensitivity runs was beyond the scope of this work given 
the large number of runs (Table 5).  However, there are a number of ways that the operating, 
assessment, and management models may be modified to test a particular scenario, and future 
work using this model test a wider range of scenarios to identify when these control rules begin 
to perform poorly. For example, the performance of the all of the control rules likely depends on 
assessment accuracy.  We included two scenarios of data quality that differed in the amount of 
observation and process error that generated the data sets.  Assessment accuracy can degrade 
substantially if process errors have trends over time (e.g., Wilberg et al. 2006) or if the data are 
relatively uninformative about the population state (e.g., Bence et al. 1993). 

An additional source of error that we did not include in our simulations was implementation 
error, such that the specified ABC was removed from the population.  We excluded 
implementation error from our models because our goal was to characterize ABC control rule 
performance rather than the performance of management for a given stock.  For many fisheries, 
particularly those with large recreational sectors (e.g., Terceiro 2011), greatly exceeding the 
ABC may be a frequent occurrence.  In such cases the control rules we explored would likely 
have resulted in greater POF, although it would depend on the pattern of implementation error.  In 
federal U.S. fisheries management, implementation error should be considered by managers 
when setting annual catch limits (ACL), with larger buffers between the ACL and ABC when the 
error is large (Federal Register, 2009).  Because we were focused on the performance of ABC 
control rules, we did not consider implementation error in our model. Consideration of both 
factors in a broader analysis might reveal interesting patterns with respect to control rule 
performance, particularly if the goal is to test a management system for a specific fishery. 

Additional sensitivity runs of the model exploring a wider of ecosystem effects on a population 
are warranted.  We explored the impacts a gradual decline in steepness of the stock-recruitment 
relationship, mimicking a long-term shift in stock productivity.  An alternative option not 
explored in this work might be a dramatic change in steepness associated with a regime shift 
(Hare and Mantua 2000).  MSE studies for species undergoing regime shifts have been 
conducted, although these studies generally focus on the development of specific control rules 
that include the effects of environmental covariates on recruitment and reference points (A’Mar 
et al. 2009; Punt and Szuwalski 2013).  In general, attempts to account for changing 
environmental conditions in a harvest control rule result in greater variability in control rule 
performance, particularly when the projected changes do not occur (Punt et al. 2013).  The 
control rules explored in this study do not attempt to account for changing environmental 
conditions, and future exploration of their robustness to a range of environmental changes is 
warranted.   

Identifying robust harvest control rules is essential for effective fisheries management in the face 
of uncertainty.  This work showed that using even modest buffers when setting the ABC are 
generally effective at limiting overfishing, in the sense that the limit fishing mortality rate is not 
frequently exceeded, but that more conservative control rules may result in higher average 
biomass and yield long term.  In addition, the more conservative options provide similar long-
term benefits to the fishery while having a low risk of overfishing, and allow more rapid 
recovery of depleted populations.  The results of this work may be used as a guide for managers 
in the selection of an appropriate ABC for their stock, and the flexible MSE framework 
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developed here may be used to explore a wider range of control rules under different conditions 
or for particular case studies.   
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Table 1.  Equations governing the population and data-generating dynamics in the operating model.  

 Equation Description 
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Table 2.  Description of the index and state variables used in equations in the model (presented in Table 
1).  Parameter descriptions and values used are presented in Table 3.   

 

  

Symbol Description

Index

variables

t Year

a Age 

State

variables

N Numerical abundance

S Spawning biomass (kg)

L Length (cm)

W Weight (kg)

m Maturity (proportion)

ss Survey selectivity (proportion)

sf Fishery selectivity (proportion)
F Fishing mortality rate (year-1)
Z Total mortality rate (year-1)
C Total fishery catch (kg)
Cobs Observed fishery ctach (kg)

pC Proportions at age in catch

pC,obs Observed proportion at age in catch

I Survey numerical  index of abundance 

Iobs Observed survey numerical  index of abundance 

pI Proportions at age in survey

pI,obs Observed proportion at age in survey
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Table 3.  Parameters values used in the model.  Life history – invariant parameters are presented at the 
top, with multiple values explored for the “good” and “bad” assessment cases.   

 

 

Parameter Description Value

R standard deviation of stock-recruit relationship 0.77, 1.25

R autocorrelation in recruitment 0, 0.44

M standard deviation of time-varying  M 0.15

M autocorrelation in M 0.3, 0.9

s standard deviation of age at 50% selectivity 0.1

s autocorrelation in selectivity 0.3, 0.9

C standard deviation of catch estimates 0.15

I standard deviation of survey estimates 0.29, 0.63

nC effective sample size of the catch 200, 500

nI effective sample size of the survey 200,500

q survey catchability 0.00005

q standard deviation of survey catchability 0.01, 0.05

Slow Medium Fast

aR Age at recruitment (to population) 5 3 1

amax Maximum age 20 12 7

M Mean natural mortality rate 0.1 0.2 0.4

R0 Virgin recruitment 1x106 1x106 1x106

h Steepness 0.6 0.75 0.9

a0 Age at length=0 0 0 0

L∞ Maximum length 90 90 90

k Growth rate 0.07 0.13 0.27

b1 L-W scalar 3.0 x 10-6 3.0 x 10-6 3.0 x 10-6

b2 L-W exponent 3 3 3

m50 Age at 50% maturity 7 3.5 1.75

s50 mean age at 50% selectivity in fishery 7 3.5 1.75

s50 mean age at 50% selectivity in fishery 5.3 2.6 1.3

mslope Slope of maturity function 1 1 1

sslope Slope of selectivity function 1 1 1

S0 Unfished spawning biomass 9,073,360 4,486,140 2,270,360
SPR target Target spawning potential ratio 0.35 0.35 0.35

FSPR F at the target SPR 0.101 0.192 0.394

SPR at MSY SPR corresponding to FMSY 0.46 0.39 0.344

FMSY FMSY 0.068 0.167 0.4

SMSY Spawning biomass that produces MSY 3,324,186 1,502,760 738,941

MSY Maximum sustainable yield 203,196 211,429 210,533

Fmax F that maximizes yield per recruit 0.146 0.252 0.46
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Table 4.  Acceptable biological catch (ABC) control rules explored in this analysis. P* refers to a target 
probability of overfishing.  The overfishing limit (OFL) is the catch achieved by fishing at the limit 
fishing mortality reference point (Flim) given the projected abundance at age in the assessment model.  
Many of the control rules differed in the coefficient of variation (CV) assumed for a lognormal 
distribution about the OFL.  The control rules that varied P* did so using a biomass-based rule (Figure 1).    

 

 

 

  

Control rule Assumed CV of Buffer
name code Target F Target P* OFL distribtuion (ABC < OFL)?

OFL Flim - - no

75% of Flim 0.75Flim - - yes
P* var (0.38) - varies 0.38 yes

P* var (0.70) - varies 0.7 yes

P* var (1.0) - varies 1 yes

P* fix (0.38) - 0.4 0.38 yes

P* fix (0.70) - 0.4 0.7 yes

P* fix (1.0) - 0.4 1 yes
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Table 5. List of model runs explored in the model across life histories (F,M,S) and exploitation level in 
the analysis.     

 

Effective Recruitment

Model Life sample Survey variability SPR SA ABC

run histories size (E) error ( I) M  f  (R) R target h interval calc.

1 F,M,S 200 0.29 0.3 0.3 0.77 0.44 0.35 fixed 2 fixed

2 F,M,S 50 0.63 0.9 0.9 0.77 0.44 0.35 fixed 2 fixed

3 F,M,S 200 0.29 0.3 0.3 1.25 0.44 0.35 fixed 2 fixed

4 F,M,S 50 0.63 0.9 0.9 1.25 0.44 0.35 fixed 2 fixed

5 F,M,S 200 0.29 0.3 0.3 0.77 0 0.35 fixed 2 fixed

6 F,M,S 50 0.63 0.9 0.9 0.77 0 0.35 fixed 2 fixed

7 F,M,S 200 0.29 0.3 0.3 1.25 0 0.35 fixed 2 fixed

8 F,M,S 50 0.63 0.9 0.9 1.25 0 0.35 fixed 2 fixed

9 F,M,S 200 0.29 0.3 0.3 0.77 0.44 0.35 declining 2 fixed

10 F,M,S 50 0.63 0.9 0.9 0.77 0.44 0.35 declining 2 fixed

11 F,M,S 200 0.29 0.3 0.3 1.25 0.44 0.35 declining 2 fixed
12 F,M,S 50 0.63 0.9 0.9 1.25 0.44 0.35 declining 2 fixed
13 F,M,S 200 0.29 0.3 0.3 0.77 0 0.35 declining 2 fixed
14 F,M,S 50 0.63 0.9 0.9 0.77 0 0.35 declining 2 fixed
15 F,M,S 200 0.29 0.3 0.3 1.25 0 0.35 declining 2 fixed

16 F,M,S 50 0.63 0.9 0.9 1.25 0 0.35 declining 2 fixed
17 S 200 0.29 0.3 0.3 0.77 0.44 0.46 fixed 2 fixed
18 S 50 0.63 0.9 0.9 0.77 0.44 0.46 fixed 2 fixed

19 S 200 0.29 0.3 0.3 1.25 0.44 0.46 fixed 2 fixed

20 S 50 0.63 0.9 0.9 1.25 0.44 0.46 fixed 2 fixed

21 M 200 0.29 0.3 0.3 0.77 0.44 0.35 fixed 2 proj.

22 M 50 0.63 0.9 0.9 0.77 0.44 0.35 fixed 2 proj.

23 M 200 0.29 0.3 0.3 1.25 0.44 0.35 fixed 2 proj.

24 M 50 0.63 0.9 0.9 1.25 0.44 0.35 fixed 2 proj.
25 M 200 0.29 0.3 0.3 0.77 0.44 0.35 fixed 5 proj.
26 M 50 0.63 0.9 0.9 0.77 0.44 0.35 fixed 5 proj.
27 M 200 0.29 0.3 0.3 1.25 0.44 0.35 fixed 5 proj.

28 M 50 0.63 0.9 0.9 1.25 0.44 0.35 fixed 5 proj.

29 M 200 0.29 0.3 0.3 0.77 0.44 0.35 fixed 2 avg.

30 M 50 0.63 0.9 0.9 0.77 0.44 0.35 fixed 2 avg.
31 M 200 0.29 0.3 0.3 1.25 0.44 0.35 fixed 2 avg.
32 M 50 0.63 0.9 0.9 1.25 0.44 0.35 fixed 2 avg.
33 M 200 0.29 0.3 0.3 0.77 0.44 0.35 fixed 5 avg.
34 M 50 0.63 0.9 0.9 0.77 0.44 0.35 fixed 5 avg.
35 M 200 0.29 0.3 0.3 1.25 0.44 0.35 fixed 5 avg.
36 M 50 0.63 0.9 0.9 1.25 0.44 0.35 fixed 5 avg.
37 M 200 0.29 0.3 0.3 0.77 0.44 0.35 declining 2 proj.
38 M 50 0.63 0.9 0.9 0.77 0.44 0.35 declining 2 proj.
39 M 200 0.29 0.3 0.3 1.25 0.44 0.35 declining 2 proj.
40 M 50 0.63 0.9 0.9 1.25 0.44 0.35 declining 2 proj.
41 M 200 0.29 0.3 0.3 0.77 0.44 0.35 declining 5 proj.
42 M 50 0.63 0.9 0.9 0.77 0.44 0.35 declining 5 proj.
43 M 200 0.29 0.3 0.3 1.25 0.44 0.35 declining 5 proj.
44 M 50 0.63 0.9 0.9 1.25 0.44 0.35 declining 5 proj.
45 M 200 0.29 0.3 0.3 0.77 0.44 0.35 declining 2 avg.
46 M 50 0.63 0.9 0.9 0.77 0.44 0.35 declining 2 avg.
47 M 200 0.29 0.3 0.3 1.25 0.44 0.35 declining 2 avg.
48 M 50 0.63 0.9 0.9 1.25 0.44 0.35 declining 2 avg.
49 M 200 0.29 0.3 0.3 0.77 0.44 0.35 declining 5 avg.
50 M 50 0.63 0.9 0.9 0.77 0.44 0.35 declining 5 avg.
51 M 200 0.29 0.3 0.3 1.25 0.44 0.35 declining 5 avg.
52 M 50 0.63 0.9 0.9 1.25 0.44 0.35 declining 5 avg.
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Table 6.  Performance measures calculated for different time periods at the end of each model run.  The 
AAV of the catch is calculated following Punt  (2003) as  ܸܣܣ ൌ ∑ ሻݐሺܥ| െ ݐሺܥ െ 1ሻ|/∑ ሻ௧௧வଵݐሺܥ  

 

 

  

Performance Measure Time Period(s)

Mean spawning biomass all years / final 5 years
Relative change in biomass first 5 years / first 15 years

Probability of being overfished all years

Mean Catch all years / final 5 years

Relative interannual variation (AAV) in catch all years / final 5 years

Mean fishing mortality rate all years

Overfishing probability (true) all years

Overfishing probability (estimated) all years

Probability of exceeding FMAX all years
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Figure 1.  Left : Threshold-based P* control rule, where the target P* declines linearly as the estimated 
spawning biomass falls below the SMSY level.  Right: Buffer size (ABC  / OFL) as a function of the target 
P* and the assumed CV of the distribution for the OFL.   
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Figure 2.  Probability of overfishing across control rules for the base model runs with low (top) and high 
(bottom) stock assessment uncertainty.  The colors represent the different exploitation histories and are 
separated by life history (fast, medium, and slow).   
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Figure 3.  Mean spawning biomass ratio (S / SMSY) in the final 5 years for the base model run with low 
assessment uncertainty.  The colors represent the different exploitation histories and are separated by life 
history (fast, medium, and slow).   
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Figure 4.  Average yield (relative to deterministic maximum sustainable yield) in the final five years for 
each control rule for runs for the high data quality scenarios with low recruitment variability with no 
autocorrelation.   
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Figure 5.  Tradeoffs between the probability of overfishing and short- (left) and long-term yield for the 
base model run with low assessment uncertainty.  The symbols represent the control rules, and the colors 
represent the exploitation history.  Note the different scales for the y-axis.   
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Figure 6.  Relationship between the probability of overfishing and the mean F / Flim (left) and the 
interannual variability in the catch (right) for the base model run with low assessment uncertainty.  The 
symbols represent the control rules, and the colors represent the exploitation history. 
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Figure 7.  Average catch for the final 5 years across control rules for the slow life history across model 
runs of different assessment uncertainties (low / high), levels of recruitment variability (R  = 0.77 / 1.25), 
and recruitment autocorrelation (R = 0, 0.44) 
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Figure 8.  .  Average yield (relative to deterministic maximum sustainable yield) in the final five years for 
each control rule for runs for the high data quality scenario with low recruitment variability and no 
autocorrelation in recruitment.   
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Figure 9.  Probability of overfishing for 3 control rules used the set the ABC using projections, different 
intervals between assessments, and weighted averaging of the ABC.  Results are shown for the heavy 
exploitation scenario for the medium life history, with low (top) and high recruitment variability (bottom).  
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Figure 10.  AAV of the catch for 3 control rules used the set the ABC using projections, different 
intervals between assessments, and weighted averaging of the ABC.  Results are shown for the heavy 
exploitation scenario for the medium life history, with low recruitment variability. 
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Figure 11 . Stochastic yield curves across life histories for two levels of recruitment variability (R = 0.77 
and 1.25).  The solid and dashed vertical gray lines represent the deterministic estimates of FMSY and F35%, 
respectively.   
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Abstract 

The use of stock assessments to inform management and decision making has increased 
worldwide.  Two of the challenges of using stock assessments in management decisions are data 
availability and the allocation of resources to conduct stock assessments in a frequent and timely 
manner.  While data-management lag and assessment timelines can strongly affect model 
predictions, few studies have looked into their effects. We conducted a simulation evaluation that 
included the population dynamics, stock assessment, and management to determine effects of 
assessment interval and data-management lag on the probability of overfishing, average catch, 
average biomass, and the variation in catch.  Assessment intervals ranged from annual 
assessments to assessments every ten years, and data-management lag (time between the last 
year of data in the assessment and when new regulations are implemented) ranged between one 
and three years.  Further, we tested the management options under two life histories (fast and 
slow) and two data scenarios (good and poor) to identify interactions between these parameters 
and control rule performance.  Increasing assessment interval and data-management lag caused a 
decrease in average catch and biomass across scenarios, with data-management lag having a 
larger effect compared to assessment interval. The probability of overfishing was generally 
higher when assessment intervals were longer and the variability in catch decreased with 
decreasing assessment intervals.  Across all performance metrics the effects of poorer data 
resulted in magnified effects of assessment interval and data-management lag.  Our results 
provide guidance to management by identifying the tradeoffs for management between 
frequency of assessment and data-management lags. 
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Introduction 

The use of stock assessments to inform management and decision making has increased 
worldwide.  Two of the challenges of using stock assessments in management decisions are data 
availability and the allocation of resources to conduct stock assessments in a frequent and timely 
manner.  The use of the most recent data should be critical to stock assessment model 
performance because estimates from the most recent years are often used to provide management 
advice.  However, the timeline between the most recent data included in the stock assessments 
and management decision (herein called data-management lag (DML)) can extend four years or 
longer in some places.  While DML and assessment timelines can strongly affect accuracy of 
model predictions, few studies have looked into its effects (Shertzer and Prager 2007; Brown et 
al. 2012; Li et al. in review). 

Assessment intervals vary widely among management bodies, and the intervals between stock 
assessments can have an important effect on management outcomes (Mace et al. 2001, ICES 
2012; Li et al., in review). For example, the Northeast Atlantic uses annual assessments for the 
majority of their stocks (NRC 1998), most west coast U.S. assessment intervals range from 
annual to every three years, and the majority of east coast U.S. fisheries assessments are on an 
order of every three to five years.  However, some stocks have assessments intervals of ten years 
or greater, such as Illex squid (Illex argentinus).   

Frequent assessment is important in determining whether or not a stock is overfished because 
identifying early trends in biomass can avoid overfishing in the future (Mace 2001). Less 
productive stocks can be sensitive to assessment frequency, with potentially large decreases in 
SSB with long periods between assessments (Li et al., in review).  Furthermore,  if stock size is 
declining,  moving from annual to multiannual assessments could lead to an increase in the risk 
of spawning stock biomass (SSB) falling below the threshold value and catch limits being held at 
too high of a level (ICES 2012).  Additional factors affecting results of extended assessment 
intervals were dependent on the approach used to set target harvest, i.e. more successful 
candidates for longer assessment intervals being those regulated by more conservative control 
rules (Li et al., in review).   

DML is caused by a variety of interacting factors, but can have detrimental consequences on 
management success the longer management is delayed (Shertzer and Prager 2007).  The 
management process can result in a delay of up to three years between data collection and 
implementation of regulations in most U.S. regions. Shertzer and Prager (2007), discussed the 
delays of haddock (Melanogrammus aeglefinus), cod (Gadus morhua), and yellowtail founder 
(Pleuronectes Ferrugineus), whose fishery management plans were approved only after 
populations dropped to their lowest recorded levels. Delays can extend five to seven years in 
some species such as Orange roughy (Hoplostethus atlanticus) in South-East Australia (Bax et 
al. 2003) and up to 12 years in some whale species (Punt and Donovan 2007).	  The DML begins 
after data is collected for a particular stock or set of stocks. After collection, the data must be 
processed, which includes entering the data, verifying accuracy, aging samples, and any 
preliminary analyses needed to get information into the appropriate form for the stock 
assessment. The stock assessment itself can be completed in weeks to months if it is an update of 
a previously used model, or substantially longer if a new assessment methodology is being 
developed. If the stock assessment undergoes peer review before it is used in management, it 
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often adds two to three months to the process. Lastly, developing and implementing management 
actions can take up to a year or more depending on the region and species. Management 
processes can extend even longer if management is then delayed due to issues such as scientific 
uncertainty or to reduce short-term losses in profit for fishers (Brown et al. 2012).  

While DML is present in any management system, its effect has received relatively little 
scrutiny.  A delay of one year causes slight increases in SSB and yield and a small negative bias 
in estimated SSB when comparing a scenario with no lag to an annual lag (Li et al., in review).  
Delays in management decisions when a fish stock is declining can require more conservative 
management, thus larger catch reductions to rebuild a stock (Shertzer and Prager 2007). Brown 
et al. (2012), considered the consequences of delayed management in response to ecosystem and 
climate change. They similarly found that delays reduced harvest and caused lower and more 
variable harvest. However, unlike Shertzer and Prager (2007), they found that even with 
precautionary approaches in management, failing to act on the most recent management advice 
resulted in significant increases in the risk of collapse. 

In the U.S., recent modifications of legislation to guide fisheries management (Restrepo et al. 
1998; NMFS 2006) has caused fisheries managers and scientists to consider how often 
assessments are conducted and how to design procedures that can quickly feed data into the 
management system.  In the Mid-Atlantic region of the U.S., assessment intervals can range from 
annual to decadal, and DML can extend up to three years. Assessment interval timelines depend 
strongly on the fishery and ecosystem importance, stock status, and stock biology (NOAA 2014), 
while the DML is a result of the data collection and management processes.  Similar to other 
regions of the U.S., after data collection the Mid-Atlantic has a lengthy Council process for 
setting regulations.  The Mid-Atlantic Fishery Management Council (MAFMC) procedure 
begins with review and recommendation of an acceptable biological catch (ABC) limit by the 
MAFMC’s scientific statistical committee (SSC).  The ABC recommendation is then given to a 
committee who drafts recommendations for annual catch limits and regulations to achieve those 
catch limits; recommendations are then provided to the MAFMC.  The MAFMC develops 
recommendations for regulations that go through a drafting process to identify and outline any 
changes. An environmental impact statement is completed which identifies environmental effects 
of the proposed action and submits alternative actions. Scoping meetings, which are public 
hearings organized to gather input on the range of issues to be considered are also conducted.  A 
public hearing period is conducted, which is followed by a final MAFMC recommendation. The 
recommendations are then sent to NOAA’s National Marine Fishery Service where similar steps 
are followed prior to implementation by the U.S. Secretary of Commerce.  

Our objective was to use a management strategy evaluation (MSE) to test the effects of stock 
assessment interval and DML on Mid-Atlantic harvest control rule performance.  The MSE used 
a simulation approach, which included the population dynamics and management processes.  The 
management models varied by length of assessment intervals, ranging from annual to decadal, 
and DMLs, ranging from a one to three year lag. We examined a range of performance measures 
to represent objectives of fishery management including average catch, average biomass, and 
probability of overfishing.  Additionally, we evaluated how life-history, data quality and stock-
recruitment dynamics interacted with DML and assessment interval to affect management 
performance.   
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Methods 

We conducted an MSE to estimate the effects of DML and assessment interval on Mid-Atlantic 
harvest control rule performance over a range of data quality, recruitment, and life history 
scenarios. The MSE included operating and stock assessment models (Figure 1).  The operating 
model represented the true dynamics of the stock using an age-structured population model and 
implemented the management portion of the simulation by removing the ABC from the stock. 
The stock assessment model was called at regular intervals to estimate stock biomass and 
reference points for management using a statistical catch-at-age model. Target catch was then 
calculated using the MAFMC’s harvest control rule, which includes a projection to the year the 
catch limit will be implemented and uses a probabilistic approach (Shertzer et al. 2010; MAFMC 
2011).  Alternative management models were described by combinations of stock assessment 
interval (assessments every one, two, three, five, seven and ten years) and DML (of one, two and 
three years).  Each management combination was tested under a range of scenarios of good and 
poor data quality, fast and slow life history, and high and low variable recruitment variability in 
order to represent a broad range of potential fisheries. The model was run for a total of 80 years; 
in the first 30 years the fishery developed with unregulated fishing of varying intensities. During 
the remaining 50 years the management strategy was in effect. At the end of each simulation, 
performance of the control rule was summarized over the 50-year management period.  All 
models were developed in ADMB (Fournier et al. 2012).  Variable definitions and equations are 
provided in Tables 1 and 2.  

Operating Model  

The operating model simulated the population dynamics with an age-structured model. The 
model included 12 age classes for the fast life history, and 20 age classes for the slow life 
history,  where 12+, and 20+ were aggregate age classes of fish ages 12 or 20 and older.  
Abundance at age in the first year was assumed to be in its unfished equilibrium state.  We used 
a Beverton-Holt stock-recruitment relationship with a lognormally distributed random error to 
determine recruitment each year (Eq. T1.1). We implemented autocorrelated random errors in 
the stock-recruitment relationship with a correlation of 0.44 and a standard deviation of 0.77, 
which were the averages from a meta- analysis by Thorson et al. (2014), as well as a standard 
deviation of 1.25, which represented a higher level of variability.  Abundance at age was 
calculated using an exponential mortality model with additive natural and fishing mortality (Eq. 
T1.2).  The weight at age was calculated using length at age from a von Bertalanffy growth 
model (Eq. T1.4) and an allometric function of length at age (Eq. T1.3).  Maturity at age 
followed a logistic function (Eq. T1.5).  The spawning stock biomass (SSB) was the product of 
maturity-at-age, weight-at-age and abundance-at-age summed over ages for a given year (Eq. T1. 
6).     

The operating model included a single fishery, and selectivity followed a logistic function. 
Fishery selectivity and natural mortality were allowed to vary over time so that the assessment 
models would not follow exactly the same dynamics as the operating model.  Fishery selectivity 
varied over time by applying an autocorrelated, lognormally distributed error with a standard 
deviation of 0.1 and autocorrelation of 0.3 or 0.9 to the sf50% parameter (Eq. T1.7 and T1.8). 



 

49 

Natural mortality also followed an autocorrelated lognormal random process over time with a 
log-scale standard deviation of 0.15 and an autocorrelation of 0.3 or 0.9 (Eq. T1.9). Fishing 
mortality was set to 0.05 yr-1 in the first year, after which it increased linearly until it plateaued in 
year 18 and remained constant until the management period began in year 30.  The value of 
fishing mortality at the plateau depended on the exploitation history. Exploitation scenarios were 
light, moderate and heavy and used a fishing mortality multiplier (F = 0.5, 1.0, 2.5 x FMSY, 

respectively) in the plateau year. Total mortality was the sum of the natural mortality and fishing 
mortality; fishing mortality at age was the product of the selectivity at age of the fishery and the 
overall fishing mortality rate for a year. Fishery catch-at-age was calculated using the Baranov 
catch equation (Eq. T1.10). The observed fishery catch was calculated by multiplying total 
fishery catch by a multiplicative lognormal error with a log-scale standard deviation set at 0.15 
(Eq. T1.11). 

The operating model also generated catch-at-age in a survey as the product of abundance, survey 
selectivity and survey catchability (Eq. T1. 12). Survey catchability varied according to a random 
walk on the log scale with normally distributed errors (with a standard deviation of 0.01 or 0.05 
depending on the data quality scenario) to allow gradual variation in the catchability over time 
(Eq. T1.13).  The observed index of abundance included observation error with a log-scale 
standard deviation of 0.3 or 0.7 depending on the data quality scenario (Eq. T1.14). The observed 
proportions at age in the fishery and survey were generated by sampling from a multinomial 
distribution using the true proportions at age (Eq. T1.15) and effective samples sizes of 50 or 200 
depending on the data quality scenario.  The data sets were provided to a statistical catch at age 
stock assessment model that estimated, among other things, the overfishing limit (OFL) and 
relative biomass, which were provided to the operating model in order to apply the management 
control rule.  The OFL is the catch that should be achieved by fishing at the limit fishing 
mortality rate and was calculated by applying the estimated F35% from the assessment to the 
projected estimate of abundance.  An F35% mortality rate was chosen to serve as a proxy for FMSY 
because it is commonly used as a limit fishing mortality reference point for Mid-Atlantic stocks. 

After each assessment the operating model implemented the Mid-Atlantic P* control rule to find 
an ABC from the OFL estimated in the assessment (MAFMC 2011).  The P* approach adopted 
by MAFMC assumes that the OFL is lognormally distributed with a CV of 100% and a median 
from a stock assessment projection to the time the new catch limit would be implemented.  The 
ABC was estimated as the catch that achieves the 40th percentile of the OFL distribution if 
estimated B/ B35% (derived from the SPR model in the assessment) exceeded 1.0. If the estimated 
B/B35% fell below 1.0 then the P* used to calculate ABC decreased linearly to zero until B/B35% = 
0.10; below this value the ABC was set to zero and the fishery was closed (MAFMC 2011; 
Figure 2).  Once the ABC was determined, the operating model numerically calculated the 
fishing mortality associated with the ABC to apply to the stock without implementation error.  
The ABC remained constant for the duration of the period between assessments. Large 
assessment error can result in the calculated ABC exceeding the exploitable biomass of the 
population in some years.  In such rare cases the actual catch was set to 50% of the exploitable 
biomass.   

Assessment model 
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The assessment model used the data generated by the operating model with the first year of data 
collection beginning in year ten and the last year of data being the stock assessment year minus 
the DML to estimate the OFL. The assessment model was a statistical catch-at-age (SCAA) 
model that estimated the abundance, fishing mortality, biomass and fishing mortality reference 
points, and the OFL.  The structure of the SCAA model followed the same equations as the 
operating model, except that survey catchability, fishery selectivity and natural mortality did not 
vary over time in the estimation model. The natural mortality in the assessment model was set to 
the true mean natural mortality of 0.2 for the fast life history and 0.1 for the slow life history.  
The negative log likelihood function included lognormal distributions for the fishery and survey 
catch and multinomial distributions for the age composition of the catch (Eq. T.1.16 and T.1.17).  

The SCAA required data on the fishery catch-at-age and the survey index of abundance at age. 
Parameters estimated by the SCAA included recruitment for each year, fishery and survey 
selectivity parameters, abundance at age in the first year, fully selected fishing mortality for each 
year and survey catchability.  The SCAA model also used the true biological inputs from the 
operating model such as the maturity at age and weight at age as well as the estimated selectivity 
at age to estimate the F35% reference point.  Abundance in the final year of the assessment model 
was projected forward past the DML years with recruitment and fishing mortality assumed 
constant in the projection years to estimate the OFL for the appropriate management year by 
finding the catch that would achieve F35% given the projected abundance at age. B35% was 
calculated by multiplying the spawning stock biomass per recruit from fishing at F35% by the 
mean estimated recruitment over the time series.  The OFL and biological reference points were 
then returned to the operating model in order to apply the control rule and find the ABC.  

Scenarios 

Combinations of DML and assessment interval were tested under a factorial design of scenarios 
that considered alternative assumptions about data quality, stock-recruitment variability, 
exploitation history, and life history.  We modeled good and poor data quality scenarios. The 
good data scenario used a coefficient of variation of 0.3 and 0.15 for the total survey and fishery 
catch, respectively, and an effective sample size of 200 for the proportions at age in the survey 
and fishery catch.  Alternatively, for the poor data scenario a coefficient of variation of 0.7 and 
0.15 for the survey and catch, respectively, and an effective sample size of 50 for both the survey 
index of abundance and fishery catch. Survey catchability also varied by data quality scenarios 
by random walk using log scale normally distributed errors with a standard deviation of 0.01 for 
the good data scenario and 0.05 for the poor data scenario. Fishery selectivity varied over data 
quality scenario by applying an autocorrelated, lognormally distributed error with a standard 
deviation of 0.1 and autocorrelation of 0.3 or 0.9 to the sf50% parameter for the good and poor 
data scenario respectively.  Natural mortality varied by an autocorrelated lognormal random 
process with a log-scale standard deviation of 0.15 and an autocorrelation of 0.3 for the good 
data scenario and 0.9 for the poor data scenario. The log-scale standard deviation of the 
recruitment error was 0.77, the mean recruitment variability from a meta-analysis study by 
Thorson et al. (2014); additional runs with higher recruitment variability used a log-scale 
standard deviation for recruitment variability of 1.25.  Parameters of the operating model were 
chosen to represent species with a fast and a slow life history.  Life histories were tailored to 
approximate summer flounder (Paralichthys dentatus) for the fast life history and spiny dogfish 
(Squalus acanthias) for the slow life history (parameters in Table 2).  The fast life history of the 
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summer flounder included early recruitment into the fishery and early maturation, while the slow 
life history of the spiny dogfish represented lower natural mortality and late recruitment and 
maturation. Exploitation scenarios were implemented by including a fishing mortality multiplier 
(F = 0.5, 1.0, 2.5 x FMSY for the light, moderate, or heavy exploitation) in the pre-management 
portion in order to determine the abundance at the beginning of the management period. 
Preliminary model testing showed little difference between exploitation histories; therefore, the 
1000 simulations were summarized across exploitation history with the first 333 runs 
representing an underfished stock, the second 333 runs representing a fully fished stock, and the 
final 334 runs representing an overfished fished stock.   

Performance metrics 

The model tracked a range of performance metrics including the true catch, true biomass, 
probability of overfishing and average annual variability (AAV) of the catch. The catch and 
biomass performance metrics took the average catch and biomass over the 50 year management 
period. The probability of overfishing metric was calculated as the proportion of years in which 
the true fishing mortality exceeded F35% during the 50 year management period. The AAV in 
catch was the average of the absolute value of the difference of catch from year to year across the 
50 year management period.   

Results 

Across all life history and data quality scenarios, increasing DML and assessment interval 
decreased the average catch, with DML having a larger effect on catch than assessment interval 
(Figure 3). The effects on catch were relatively low for the fast life history and good data 
scenario, with average catches decreased by 2% for each additional year of DML and 1% with 
each additional year between assessments.  However, effects on catch were magnified in the poor 
data scenario to a 4% and 3% decrease in catch with an additional year of DML or assessment 
interval, respectively.  Overall, the median average catch decreased by around 20% between 
good quality and poor quality data for both life history scenarios.   Similarly, for both of the life 
histories with a good data scenario, an annual assessment with three years of DML achieved a 
similar level of average catch as an assessment every five years with one year of DML.  In the 
poor data scenarios, an annual assessment with three years of DML had similar median average 
catch to an assessment every seven years with one year of DML. The slow life history scenario 
displayed less of an effect of assessment interval and DML on average catch in the good data 
scenario compared to the fast life history.  However, the effects of DML were similar to those 
from the fast life history in the poor data scenario.  On average the slow life history saw a 1% 
decrease in the median average catch with each additional year of DML for the good data 
scenario, which was magnified to a 5% decrease in the median average catch in the poor data 
scenario. Furthermore, with each additional year between assessments for the slow life history 
scenario the median average catch decreased by 2% for the good data scenario and 3% for the 
poor data scenario.  The amount of recruitment variability had relatively little effect on 
management performance (3% increase in median for biomass and catch and 7% increase in the 
probability of overfishing) as well as larger variability across all performance metrics (Table 3). 

The effect of DML and assessment frequency on average biomass differed with life history and 
data quality (Figure 4). For the fast life history and good data scenario, each additional year of 
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DML and time between assessments caused about a 1% decrease in average biomass.  The 
median average biomass decreased about 3% with each additional year of DML and 2% with 
each additional year between assessments in the fast life history and poor data scenario.  The 
poor data quality scenarios resulted in about 5% lower average biomass for the fast life history 
relative to the good data scenario, while the slow life history saw an 11% difference. The slow 
life history and good data scenario saw a larger effect of assessment interval than DML with a 
1% decrease in biomass with each additional year of DML compared to a 2% decrease in 
biomass with each additional year between assessments.  Effects were reversed in the slow life 
history with poor data scenario with each year of DML causing a 6% decrease in the median 
biomass compared to a 5% decrease with each additional year between assessments.   

The probability of overfishing was affected by both data quality and assessment interval, but 
showed little response to DML, except when combined with higher assessment intervals 
(assessments every seven and ten years) across all scenarios (Figure 5).  Median probabilities of 
overfishing ranged from 0.25 up to 0.4 across all scenarios with relatively small changes in the 
probability of overfishing with assessment intervals less than seven years (0.25-0.3).  The effect 
of DML was negligible for the fast life history and poor data scenario, while the probability of 
overfishing increased 7% with each additional year between assessments.  The effect of 
assessment interval was reduced for the good data scenario with a 4% increase in the probability 
of overfishing for each additional year between assessments.  The effect of DML, conversely, 
was larger (2% increase in the probability of overfishing with each additional year of DML) 
relative to the poor data quality scenario.  For fast life history scenarios the mean probability of 
overfishing was around 10% higher when conducting an assessment with poor data compared to 
an assessment with good data.  In contrast, the difference between the two data quality scenarios 
was only about 2% for the slow life history.   Each additional year between assessments caused a 
6% increase in the probability of overfishing, and each additional year of DML resulted in a 4% 
increase in the probability of overfishing in the scenarios with good data. In the poor data 
scenario assessment interval and DML caused a 2% increase in the probability of overfishing.      

Catch AAV generally decreased as DML and assessment interval increased (Figure 6). All life 
history and data quality scenarios followed a consistent downward trend with each additional 
year between assessments for assessment intervals up to five years. The catch AAV increased for 
the seven and ten year assessment intervals for some of the scenarios.  For the fast life history 
scenarios, assessment interval caused a larger response in AAV than the DML. The catch AAV 
decreased about 7% with each additional year of DML for both the good and poor data scenarios 
compared to an 11% decrease with each additional year between assessments.  The catch AAV 
was substantially higher in the poor data scenario for both life histories, showing the large inter-
annual variation in catch that can occur as a result of low data quality.  DML had a small effect 
on catch AAV for the slow life history in both poor data quality scenarios.     

Discussion 

We found substantial differences in management performance as a result of assessment 
frequency and DML across a range of scenarios.  Specifically, increases in DML and assessment 
interval resulted in decreases in both the median catch and biomass. Increases in DML caused 
larger changes relative to increases in assessment intervals, on average, for all performance 
metrics except the probability of overfishing and were especially noticeable in the poor data 
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scenarios.  The effects of DML and assessment interval on the performance metrics varied 
among the life history and data quality scenarios.  For example, for average catch the effects of 
DML and assessment interval were relatively low for the fast life history and good data 
scenarios, with average catches decreased by 2% and 1%, respectively, but were magnified in the 
poor data scenario to a 4% and 3% decrease in catch with an additional year of DML or 
assessment interval, respectively. Larger changes in performance metrics were evident with the 
fast life history compared to slow life history scenarios, but effects varied across performance 
metrics.      

The effect of DML in our study was similar to that described in other studies (Shertzer and 
Prager 2007; De Leeuw et. al. 2008; Brown et al. 2012) in that delaying the management process 
can result in increased probability of collapse and variability in harvest. All studies agreed that 
lengthy DML has negative effects on achieving long-term management goals, and can result in 
unsatisfactory management outcomes. Our study examined shorter DML periods than previous 
studies (Shertzer and Prager 2007; Brown et al. 2012). However, both previous work and ours 
found that increases in DML can cause an increase in the frequency of overfishing, resulting in 
reduced catch and biomass.  Our results for DML were similar to those from Li et al. (in review), 
with small effects (<2%) when moving from a DML of one year to two years for shorter 
assessment intervals (annual, two year and three year intervals). However, Li et al. (in review), 
recommended there was no reason to rush the data collection and management process because 
their changes in performance metrics were small.  They did, however, warn against extrapolating 
results beyond the frequencies tested in their study.  Assessment intervals and DMLs of at least 
two years are common in many fisheries, and, therefore, reducing DMLs and assessment 
intervals may improve management performance.   

Our estimates of the effects of assessment interval on management performance were similar to 
previous findings (Mace et al. 2001; Li et al. in review), but we evaluated a wider range of 
assessment intervals (up to 10 years).  Previous studies used a maximum interval of assessments 
every five years.  Increases in assessment intervals caused decreases in average catch and 
biomass, increases in the probability of overfishing and increases in the catch AAV similar to 
Mace et al. (2001) and Li et al. (in review).  One interesting finding from our study involved an 
increase in the effects of DML when assessment intervals increased past five years.  For 
example, although the probability of overfishing saw little change with increasing DML in the 
shorter assessment intervals (around a 2% increase with each additional year of data lag), 
changes in the probability of overfishing with each additional year of DML increased 6% for the 
seven and ten year intervals.  The interaction of DML and assessment interval was noticeable 
across both life history and data quality scenarios and highlights a breakdown in management 
performance when prolonged assessment intervals are paired with extended DMLs.  Overall Li et 
al., (in review), saw slightly smaller effects than we did across all assessment interval scenarios. 
Results from their lower productive populations were closer to our results with lower SSB and 
yield for assessment interval.  We may have seen stronger effects of assessment intervals 
because we used a different control rule as well as increased uncertainty in our stock assessments 
due to the fishery selectivity, natural mortality and survey catchability varying overtime in the 
operating model, but assumed constant in the assessment model. 

For the seven and ten year assessment intervals greater changes in the catch AAV were seen 
compared to the shorter intervals in some scenarios. Average variation in catch should decrease 
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as assessment intervals increase because catch was constant at the ABC between assessments. 
The seven and ten year assessment intervals resulted in an increase in catch variation in the fast 
life history, most likely due to the large changes in catch after each assessment.  In some cases 
ABCs changed by more than 250% when moving from an inter-assessment year to the next 
assessment year in the seven and ten year intervals.  Large fluctuations in catch can cause social 
and economic problems (Holland 2010), and are, therefore, undesirable.  Our findings add to the 
growing literature supporting that assessment intervals of five years or longer may be ineffective 
in meeting management objectives because they often result in decreased catch, decreased 
biomass, higher probability of overfishing and extreme fluctuations in the overall catch rates 
(ICES 2012, Li et al., in review). 

Data quality can affect management performance (McGoodwinn et. al. 2007; Smith et. al. 2011), 
and we observed substantial degradation of performance in our poor data quality scenarios.  The 
large decreases in the median biomass and catch and increases in the probability of overfishing 
seen in the poor data scenarios of our study are likely due to poor assessment model 
performance. The poor data scenario included the larger variances for total fishery and survey 
catch as well as smaller effective sample sizes for the catch and survey age compositions.  
Additionally, the poor data scenarios included larger changes in survey catchability, natural 
mortality, and fishery selectivity, which were not included in the SCAA model, thereby 
increasing model misspecification. These factors caused estimates of biomass in the last year and 
reference point estimates to be relatively less accurate than the good data scenario.  Because our 
management model used a short-term projection to determine the catch limit, uncertainty in the 
abundance at age in the last year would likely be magnified.  Even with improved population 
projections, we would still expect to see poorer management results in scenarios with lower 
quality data (De Leeuw et. al. 2008).    

The effects of life history on management performance were similar to results from previous 
studies (Mace et. al. 2001; Shertzer and Prager 2007; De Leeuw et. al. 2008; Brown et. al. 2012, 
ICES 2012, Li et. al., in review). DML and assessment interval had smaller effects in the slow 
life history scenarios than the fast life histories.  These reduced effects of DML and assessment 
interval may be explained by smaller fishing mortality limit reference point (Flim) for the slow 
life history than the fast life history; 0.07 and 0.19 respectively.  Lower fishing and total 
mortality rates may cause reduced population responses due to more stability in the stock and 
less fluctuations in fishing effort year to year (Patterson and Résimont 2007).    

Recruitment variability and autocorrelation can decrease the success of extended assessment 
intervals, but the results of our high variability scenarios were similar to the average variability 
scenarios.  Under our high recruitment variability scenario, average catch and biomass were 
decreased on average 3% for each additional year of DML and 2% with each additional year 
between assessments.  We also saw, on average, a 7% increase in the probability of overfishing 
with each additional year between assessments for the fast life history, poor data scenario when 
moving from a recruitment error standard deviation of 0.77 to 1.25.  Higher recruitment 
variability resulted in larger declines in biomass because initial catch was held at too high of a 
level between assessments (ICES 2012).   

The effects of assessment intervals and DML should be considered when developing fishery 
management plans.  A  system that allows up to three years of lag between collection of data and 
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implementation of regulations, sacrifices considerable amounts of biomass and catch.  
Additionally, when extended DML is paired with longer assessment intervals, suboptimal 
outcomes are even more likely.  Some potential approaches to reduce DML include a shorter 
management process and faster data processing.   For example, the North Pacific Fishery 
Management Council (NPFMC) has been successful in achieving a one year DML in the 
majority of its fisheries (AFSC 2014).   First, the NPFMC utilizes real-time in-season reporting 
of catches.  In addition to active reporting, the NPFMC uses projections to set catch limits two 
years in the future, which goes through the public comment process the year prior to regulations 
being set, effectively removing the time lag for public comment in that year.  Finally, the 
NPFMC has reduced the assessment timeline by using partial ageing data for the most recent 
year within the stock assessment for some species (AFSC 2014); in these cases, only the survey 
data is aged.  Reducing DML requires a quicker turnover of data and a faster management 
process that may require increased resources to achieve the reduction.  Decreasing the amount of 
data within stock assessments (e.g., partial age composition data in the final year) may also 
degrade model performance (Ono et al. 2014). The consequences of using only immediately 
available data (less data within assessments) to decrease data lag in comparison to data lag 
effects is an important matter to explore further.  While the use of many of the techniques to 
decrease DML may not be immediately achievable in some regions, it identifies potential 
possibilities that should be considered in the future.    
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Table 1. Equations governing the population and data-generating dynamics in the operating 
model. 
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Table 2. Symbols used in the operating and assessment models and values for specified life 
history and time-varying parameters. 

     Life history 

Parameter  Description  Slow Fast 

aR Age at recruitment   5 3 

amax Maximum age  20 12 

M Natural mortality rate  0.1 0.2 

R0 Unfished equilibrium recruitment  1x106 1x106 

h  Steepness  0.6 0.75 

a0 Age at length = 0  0 0 

L∞ Asymptotic maximum length  90 90 

k Growth rate  0.07 0.13 

b Length-weight relationship scalar  3.5 x 10-6 3.5 x 10-6 

c Length-weight relationship exponent  3.15 3.15 

m50 Age at 50% maturity  7 3.5 

mslope Slope of maturity function   1 1 

sf50 Mean age at 50% selectivity in the fishery   1.75 3.5 

ss50 Mean age at 50% selectivity in the survey  1.3 2.6 

sfslope Slope of fishery selectivity function  1 1 

ssslope Slope of survey selectivity function  1 1 

 

 

σR 

 

Time Varying parameters 

Standard deviation of stock-recruit relationship 

  

 

0.77, 1.25 

0.44 

0.15 

ΦR Autocorrelation in recruitment   

σM Standard deviation of time-varying M  
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ΦM  Autocorrelation in M   0.3, 0.9 

0.1 
σf 

Standard deviation of age at 50% selectivity in 
fishery  

 

Φf  Autocorrelation in fishery selectivity            0.3, 0.9 

            0.15 

               0.29, 0.63 

 

                 

σC  Standard deviation of catch estimates  

σI  Standard deviation of survey estimates  

 Additional model variables 

a Age   

t Year                  

R Recruitment                  

S Spawning biomass  

sf Fishery selectivity  

ss Survey selectivity   

N Abundance                  

m maturity  

C Catch  

I Index of abundance   

q Catchability   

Z Total mortality  

W  Weight-at-age  

m Maturity-at-age  

F Fishing mortality  

E Effective sample size of the catch/ index  

n Number of observations  
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pobs Observed proportion at age   

pest Estimated proportions at age  

દ࢚ Multinomial function  

ℓ௧ Likelihood function   

ts  Error for selectivity   

tq  Error for catchability  

M  Error for natural mortality  

tI  Error for index of abundance   

tC   Error for catch  

σq  Standard deviation for catchability  

ρM Correlation coefficient of natural mortality   

ρs Correlation coefficient of selectivity   
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Table 3. Median values for recruitment variability scenarios across performance metrics. SA 
refers to stock assessment intervals and DLM refers to data-management lag combinations. 
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Fig. 1. Flow diagram of management strategy evaluation model with both operating and 
estimation models. 
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Fig. 2. Mid-Atlantic P* approach showing decreasing probability of overfishing with a declining 
B/B35% ratio 
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Fig. 3.  Box plots of the catch for each life history and data scenario with a log-scale recruitment 
standard deviation of 0.77: A) fast life history with good data, B) fast life history with poor data, 
C) slow life history with good data, and D) slow life history with poor data. The horizontal lines 
of the box plot show the median catch, the box shows the interquartile range, and the whiskers 
represent the 10th and 90th percentiles.  
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Fig. 4. Box plots of the biomass for each life history and data scenario with a log-scale 
recruitment standard deviation of 0.77: A) fast life history with good data, B) fast life history 
with poor data, C) slow life history with good data, and D) slow life history with poor data. The 
horizontal lines of the box plot show the median catch, the box shows the interquartile range, and 
the whiskers represent the 10th and 90th percentiles. 
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Fig. 5.  Box plots of the probability for each life history and data scenario with a log-scale 
recruitment standard deviation of 0.77: A) fast life history with good data, B) fast life history 
with poor data, C) slow life history with good data, and D) slow life history with poor data. The 
horizontal lines of the box plot show the median catch, the box shows the interquartile range, and 
the whiskers represent the 10th and 90th percentiles. 
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Fig. 6.  Box plots of the catch average annual variation (aav) for each life history and data 
scenario with a log-scale recruitment standard deviation of 0.77: A) fast life history with good 
data, B) fast life history with poor data, C) slow life history with good data, and D) slow life 
history with poor data. The horizontal lines of the box plot show the median catch, the box 
shows the interquartile range, and the whiskers represent the 10th and 90th percentiles. 
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Abstract 

The use of the newest available data in stock assessments can be crucial to meeting management 
goals. Even so, many stock assessments throughout the world have data-management lags (the 
time between data collection and management implementation) that can extend more than three 
years. Prior research has suggested that management performance is improved by decreasing the 
length of the decision making process and using data that is available instead of waiting for all of 
the data from a year to be ready.  We used a management strategy evaluation to test three 
methods to reduce data lag by using partial data in the last year of the assessment: 1) age-
composition data for the terminal year of the survey, but no age-composition for the fishery 
catch, 2) full survey age-composition with reduced quality age-composition data for the catch in 
the terminal year of the stock assessment (to represent using prior years’ age and length data to 
age the catch), and 3) reduced data for the age-compositions of the survey and catch in the 
terminal year of the assessment (to represent using prior years’ data to age the catch and indices). 
These methods were tested against controls with one year of data and two years of data lag.  Lag 
reduction methods that included some information about the age-composition of the catch and 
survey performed about as well as not having lag for both fast and slow life histories, but they 
sometimes resulted in higher probabilities of low biomass.  Data-management lag and lag 
reduction methods should be considered when designing fishery management plans.  
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Introduction  

Fisheries management has seen vast improvements recently with more sophisticated assessments 
and improved identification of uncertainty (Caddy and Cochrane 2001).  Yet, even with 
enhanced techniques, there are still many practical problems in fisheries management throughout 
the world (Honey et al. 2010, Chen et al. 2002).   One example of such a management issue is 
the inclusion of timely data within the stock assessment and lengthy regulation processes that 
delay implementation of catch limits.  Previous studies have noted the importance of using the 
newest available data in assessments and the decrease in management performance when lengthy 
data-management lag (the time between data collection and management implementation using 
that data) is present (Shertzer and Prager 2007; Brown et al. 2012; Li et al., in review; Sylvia 
Chapter 2). However, we were unable to find any studies that tested methods to decrease data-
management lag (DML).   

DML is caused by a combination of data preparation, stock assessment, management processes 
and management delays (Shertzer and Prager 2007; Sylvia Chapter 2).  For stocks that use age-
structured assessments to provide management advice, the process begins with fishery catch and 
survey data being collected and processed, usually from multiple sources. Fishery catch can 
sometimes be challenging to collect, especially for fisheries with a recreational sector or 
commercial fisheries that operate in multiple jurisdictions.  After the data are collected, it is then 
processed by verifying and checking the data as well as aging samples. One of the lengthiest 
portions of data collection and processing is the aging.  Because aging otoliths can be an intricate 
and laborious process, it alone can add up to a year to the DML.  Preliminary analyses are 
completed to modify information into the appropriate form for the stock assessment. The stock 
assessment period can then range from a month for updates of an existing model to much longer 
if new assessment methodology is developed.  External peer reviews of stock assessments, done 
in many parts of the U.S., can add two to three months to the process.  The management portion 
of DML which includes development and implementation of regulations can take up to a year 
depending on the region.  The final element of DML can occur if management is then delayed.  
Management delay is common in many parts of the world due to issues such as scientific 
uncertainty, waiting for more data or to reduce unfavorable outcomes (Shertzer and Prager 2007; 
Brown et al. 2012).  With all parts of DML adding to the timeline, the management process can 
see delays up to four years in some U.S. regions.  Management delays can extend up to five 
years in Australian commonwealth fisheries (Smith et al. 2008) and can be even longer (e.g., 
delays of up to 15-25 years in Lake Ijsselmeer in the Netherlands; de Leeuw et al. 2008).   

Few studies have been conducted on the effects of DML (Shertzer and Prager 2007; Brown et al. 
2012; Li et al., in review; Sylvia Chapter 2).  Each year of DML caused around a 5% decrease in 
biomass and catch for poor data quality scenarios while causing up to a 6% increase in the 
probability of overfishing when paired with longer assessment intervals (Sylvia Chapter 2). The 
largest effects of DML were seen with the longer assessment intervals and lower quality data.  A 
study that tested the effect of DML for Great Lakes yellow perch (Perca flavescens) 
management found relatively small (<1%) decreases in spawning stock biomass (SSB) and yield 
when DMLs were increased from one to two years (Li et al., in review). However, increasing 
DML by delaying management actions can allow continued overexploitation, leading to rigid 
rebuilding plans and increased probability of stock collapse (Brown et al. 2012; Shertzer and 
Prager 2007).  Waiting for more data may actually be harmful if it delays management even 
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longer (Shertzer and Prager 2007).  Slow, stepwise effort reductions in the management of Lake 
Ijsselmeer in the Netherlands resulted in meeting short term-interests, but failed in recovery of 
fish stocks and led to stock collapse (de Leeuw et al. 2008).   

Strategies to reduce the effects of DML have been developed.  Reducing harvest is a potential 
solution to mitigate the effects of delays, but does little to solve the extended DML problem 
within the management system (Brown et al. 2012).  Making best use of the available data may 
help to avoid further stock decline or poor management outcomes.  Some regions have adopted 
methods that allow them to use partial or missing age-composition data for the most recent year 
of stock assessments.  Converting length composition to age-composition often times causes 
delays due to the aging process, but length composition data is typically available relatively 
quickly.  Predicting ages of fish in the most recent year can often be accomplished by using 
length composition data in that year and length and age-composition data in previous years to 
make an inverse age-length key for the most recent year (Quinn and Deriso, 1999).  Utilizing 
past data to estimate age-composition in the most recent year can significantly decrease the data 
lag that occurs as a result of the aging process.  The North Pacific Fishery Management Council 
(NPFMC) has been successful in achieving a one year DML in majority of its fisheries by using 
some of the previously mentioned techniques (AFSC 2014).   In addition to decreasing the 
management process by setting catch limits two years in advance, NPFMC has cut down the data 
lag by using real time in season reporting for catch data and by using assessment models that do 
not require catch-at-age data in the last year of the stock assessment for some species (AFSC 
2014). To accomplish this reduction in DML, NPFMC ages only the survey data, and an inverse 
age-length key is used to estimate the terminal age-composition of the catch.  

Our study builds upon previous study recommendations, specifically Shertzer and Prager (2007), 
by testing methods that use available data to fill in gaps that would otherwise be present in the 
most recent year.  We used a management strategy evaluation (MSE) of the U.S. Mid-Atlantic 
fisheries management system to test the effect of several methods for reducing data lag in the 
management process. We compared several methods of reducing DML by using partial data in 
the last year of the stock assessment. The MSE simulated the population dynamics, the stock 
assessment and management process, based on data availability for stocks managed by the Mid-
Atlantic Fishery Management Council (MAFMC). We evaluated effectiveness using a range of 
performance measures, which represent how well fishery management objectives were achieved. 
We tested the approaches under a range of data quality, life history, and stock-recruitment 
scenarios.  

Methods 

We conducted an MSE to test the performance of several methods of reducing DML for 
MAFMC stocks.  We tested three lag reduction (LR) methods and two controls (C): C1) a 
control with one year,  LR1) using age-composition data for the terminal year of the survey, but 
no age-composition for the catch, LR2) full survey age-composition data, but reduced quality 
age-composition data for the catch in the terminal year, LR3) reduced quality data for both the 
survey and catch age-compositions in the terminal year of the assessment, and C2) a control with 
two years of data lag . The reduced quality age-composition approaches represented cases in 
which size-at age of the stock is variable such that using prior years’ data would inject additional 
error into the age composition data.  For these approaches, length data is available for the most 
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recent year and size-at-age data from previous years would be used to convert length 
composition to age-composition.  If size-at-age of the stock does not vary over time, then use of 
previous years’ data should not result in lower quality age composition information.  The two 
controls used full age-composition data for both the survey and the catch with one and two year 
DMLs (see Table 1).  Each lag reduction method was tested under scenarios with good and poor 
quality data, fast and slow life histories, and high and low recruitment variability in order to 
represent a broader range of fisheries.  

The MSE included operating and assessment models (Figure 1).  The operating model 
represented the true dynamics of the stock with an age-structured population model. Data 
representing catch and surveys were “sampled” from the operating model to represent the 
information typically used in the assessment process and varied based on the lag reduction 
method chosen.  Subsequently, a statistical catch-at-age (SCAA) model was called at regular 
stock assessment intervals, varying from annual assessments to assessments every three years,  to 
estimate biomass and age structure in the last year and fishing mortality and biomass reference 
points.  The management portion of the model used the results of the stock assessment to 
determine target catch using the MAFMC harvest control rule, which includes a short-term 
projection to the year the catch limit will be implemented and uses a probabilistic approach 
(Shertzer et al. 2008; MAFMC 2011).   We used four DML scenarios with differing data in the 
last year.  Each simulation was run for a total of 80 years.  In the first 30 years the fishery 
developed with unregulated fishing. During the remaining 50 years the management strategy was 
in effect. At the end of each simulation, performance of the control rule was summarized over 
the 50-year management period.  All models were developed in ADMB (Fournier et al. 2012).  
Variable definitions and equations are provided in Tables 2 and 3. 

Operating Model  

The operating model simulated the population dynamics with an age-structured model. The 
model included 12 age classes for the fast life history, and 20 age classes for the slow life 
history, where 12+ and 20+ were aggregate age classes of fish ages 12 or 20 and older.  
Abundance-at-age in the first year was assumed to be in its unfished equilibrium state.  We used 
a Beverton-Holt stock-recruitment relationship with an autocorrelated, lognormally distributed 
random error to determine recruitment each year (Eq. T2.1). The errors in the stock-recruitment 
relationship had a correlation of 0.44 and a log-scale standard deviation of 0.77 (the average 
from a meta- analysis by Thorson et al. (2014)) or 1.25, which represented a higher level of 
variability.  Abundance-at-age was calculated using an exponential mortality model with additive 
natural and fishing mortality (Eq. T2.2).  The weight-at-age was calculated using length-at-age 
from a von Bertalanffy growth model (Eq. T2.3) and an allometric function of length-at-age (Eq. 
T2.4).  Maturity-at-age followed a logistic function of age (Eq. T2.5).  The spawning stock 
biomass (SSB) was the product of maturity-at-age, weight-at-age and abundance-at-age summed 
over ages for a given year (Eq. T2. 6). 

The operating model included a single fishery, and selectivity followed a logistic function of age.  
Selectivity of the fishery and natural mortality were allowed to vary over time so that the 
assessment models would not exactly match the dynamics of the operating model.  Fishery 
selectivity varied over time by applying an autocorrelated, lognormally distributed error with a 
standard deviation of 0.1 and autocorrelation of 0.3 or 0.9 to the sf50% parameter (Eq. T2.7 and 
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T2.8), and natural mortality also followed an autocorrelated lognormal random process over time 
with a log-scale standard deviation of 0.15 and an autocorrelation of 0.3 (Eq. T2.9). Fishing 
mortality was set to 0.05 in the first year, after which it increased linearly until it plateaued in 
year 18 and remained constant until the management period began in year 30.  The value of 
fishing mortality at the plateau depended on the exploitation history. Exploitation scenarios were 
light, moderate and heavy and used a fishing mortality multiplier (F = 0.5, 1.0, 2.5 x FMSY, 

respectively) in the plateau year. Total mortality was the sum of the natural mortality and fishing 
mortality; fishing mortality at age was the product of the selectivity at age of the fishery and the 
overall fishing mortality rate for a year. Fishery catch-at-age was calculated using the Baranov 
catch equation (Eq. T2.10). 

The operating model also generated catch-at-age in a survey as the product of abundance, survey 
selectivity, and survey catchability (Eq. T2.11). Survey catchability varied according to a random 
walk on the log scale with normally distributed errors (with a standard deviation of 0.01 or 0.05 
depending on the data quality scenario) to allow gradual variation in the catchability over time 
(Eq. T2.12).  The observed catch was calculated by multiplying total fishery catch by a 
lognormal error with a log-scale standard deviation set at 0.15 (Eq. T2.13). The observed index 
of abundance was calculated similarly, where the log-scale standard deviation of the random 
error was set to 0.3 or 0.7 depending on the data quality scenario (Eq. T2.14). The observed 
proportions at age for the fishery and survey were generated by sampling from a multinomial 
distribution using the true proportions at age (Eq. T2.15) and effective samples sizes (ESSs) of 
50 or 200 depending on the data quality scenario for all years prior to the terminal year of the 
stock assessment.  The ESSs in the terminal year depended on the lag reduction methods.  

Age-structured stock assessment models require two sources of data, the fishery catch at age and 
an additional source of auxiliary data, such as a survey index of abundance (Fournier and 
Archibald 1982; Quinn and Deriso, 1999).  The observations of age-composition from fishery 
dependent and survey data are often modeled using a multinomial distribution (Quinn and 
Deriso, 1999). With increased sample sizes the observation error in the proportions would 
decrease.  Likewise, the accuracy of the method used to age the sample affects the effective 
sample size.  If resources are not available to complete the aging of samples in the most recent 
year, other methods are needed to obtain the age composition.  One such method is to use size-
age data from previous years to generate an inverse age-length key, which is then used to 
estimate age composition in the most recent year using the length data.  If growth patterns are 
changing over time, using size-age data from prior years to estimate the most recent year’s age 
composition will increase the amount of observation error.  We approximated this process by 
using a lower effective sample size to generate age composition data in the most recent year 
using three approaches.  Our study utilizes this idea by using a smaller effective sample size in 
order to simulate the error associated with using prior years’ age-length data to age the samples 
in the most recent year.  In practice this would be done using an inverse age-length key (Quinn 
and Deriso 1999) because the estimation of age composition using traditional age-length keys 
from prior years can introduce sampling error and bias into fishery assessments (Coggins, 2013).   

Differences in quality of the age-composition data in the last year of the assessment were 
included by modifying the ESS of the survey and catch age-composition for that year. Reduced 
ESSs were chosen to represent the error associated with the use of an inverse-age-length key in 
order to estimate age-composition from the length composition and data from previous years.  
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For the two controls, the terminal year had the same ESS as the earlier years, 50 or 200 
depending on the data quality scenario.  LR1 included the same ESS for the terminal year as for 
previous years for the survey age-composition, but did not include any age-composition data for 
the fishery catch in the terminal year.  LR2 used an ESS of 50 or 200 for the survey proportions 
at age and an ESS of 12 or 50 depending on data quality (poor and good respectively) for fishery 
proportions at age to represent the use of previous age and length data to infer ages for terminal 
year catch.  LR3 used an ESS of 12 or 50 for both the survey and fishery proportions at age in 
the terminal year of the stock assessment to represent the use of previous age and length data to 
infer ages in the terminal year of the stock assessment. Sample sizes of the original ESS, one half 
the original ESS and one fourth the original ESS showed slight differences (<2%) in 
performance metrics for both data quality scenarios.  An ESS of one fourth the original size 
should represent a case with substantial sampling variability because the estimation of age-
composition using inverse age-length keys should not degrade in performance if growth does not 
change over time.  

After each assessment the operating model implemented the MAFMC's P* control rule to 
estimate a target catch from the overfishing limit (OFL; MAFMC 2011).  The OFL was 
estimated by applying the estimated F35% from the assessment to the terminal estimate of 
abundance.  F35% is commonly used as a limit fishing mortality reference point (Clark 2002). The 
MAFMC P* approach assumes that the OFL is lognormally distributed with a median value from 
the stock assessment projections and a CV of 100%.  The target catch was calculated as the catch 
that achieves the 40th percentile of the OFL distribution if estimated B/B35% (derived from the 
SPR model in the assessment) exceeded 1.0. If estimated B/B35% fell below 1.0 then the P* used 
to calculate ABC decreased linearly to zero until B/B35% = 0.10; below this value the target catch 
was set to 0 (MAFMC 2011; Figure 2).  Once the target catch was determined, the operating 
model used a golden section search to find the fishing mortality resulting from achieving that 
catch.  The target catch remained constant for the duration of the period between assessments.  

Assessment model 

We included two assessment models, which differed in whether age-composition data was 
available for the fishery in the terminal year. The assessment models used the data generated by 
the operating model with the first year of data collection beginning in year ten and the last year 
of data being the stock assessment year minus the DML. The assessment models were SCAA 
models that estimated the abundance, fishing mortality, fishing mortality and biomass reference 
points, and the OFL.  The structure of the SCAA models followed the same equations as the 
operating model, except that survey catchability, fishery selectivity, and natural mortality did not 
vary over time. The natural mortality in the assessment model was set to the mean true natural 
mortality of 0.2 for the fast life history and 0.1 for the slow life history.  The negative log 
likelihood functions included lognormal distributions for the fishery and survey catch and 
multinomial distributions for the age-composition of the catch (Eq. T.2.16 and T.2.17).  Each 
SCAA required the two data sets that were created in the operating model: the fishery catch-at-
age and the survey index of abundance-at-age. The individual assessment models differed based 
on how they handled the survey and fishery age-composition and are described below.  While 
LR2 and LR3 as well as C1 and C2 used a likelihood function that included all years for all data 
sources, LR1 did not include the age-composition of the catch in the last year.  All of the models 
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were provided the effective sample sizes that were used to generate the age-composition data for 
each year.   

Parameters estimated by the SCAAs included recruitment parameters, fishery and survey 
selectivity parameters, abundance-at-age in the first year, fully selected fishing mortality for each 
year, and survey catchability.  The SCAA models also used the true biological inputs from the 
operating model such as the maturity at age and size at age as well as the estimated selectivity at 
age to estimate the F35% and B35% reference points.  Abundance in the final year of the 
assessment model was projected forward past the DML years in order to estimate the OFL for 
the year in which the catch limit would be implemented by finding the catch that would achieve 
F35% given the projected abundance-at-age.  B35% was calculated by multiplying the SPR from 
fishing at F35% by the mean recruitment over the time series (Haltuch et al. 2008). The OFL and 
biological reference points were then returned to the operating model in order to apply the 
control rule and find the target catch.  

Scenarios 

Each lag reduction method was tested under annual, two year, and three year stock assessment 
intervals with a DML of one year and compared to the controls with a DML of one and two 
years.  These combinations were tested under a factorial design of scenarios that considered 
alternative assumptions about data quality, stock-recruitment variability, exploitation history and 
life history.  The simulations included two data quality types that differed in the amount of 
observation error in the survey index, the ESSs of the age-composition of the catch and survey, 
and the amount of variability in fishery selectivity, natural mortality, and survey catchability. 
The good data scenario used a coefficient of variation of 0.3 and 0.15 for the total survey and 
fishery catch, respectively, and an ESS of 200 for the proportions at age in the survey and fishery 
catch.  For the poor data scenario a coefficient of variation of 0.7 and 0.15 for the survey and 
catch respectively and an effective sample size of 50 for both the survey index of abundance and 
fishery catch.  Parameters of the operating model were chosen to represent species with a fast 
and a slow life history.  Life histories were tailored to approximate summer flounder 
(Paralichthys dentatus) for the fast life history and spiny dogfish (Squalus acanthias) for the 
slow life history (parameters in Table 2).  The fast life history of the summer flounder included 
early recruitment into the fishery and early maturation, while the slow life history of the spiny 
dogfish represented low natural mortality and late recruitment and maturation. Due to 
preliminary model testing showing little difference between exploitation histories, the 2000 
simulations were summarized across exploitation history with the first 667 runs representing an 
underfished stock, the second 667 runs representing a fully fished stock, and the final 666 runs 
representing an overfished fished stock.  Exploitation scenarios were implemented by including a 
fishing mortality multiplier (F = 0.5, 1.0, 2.5 x FMSY for the light, moderate, or heavy 
exploitation) in the pre-management years. 

Performance metrics 

The model tracked a range of performance metrics including the true catch, true biomass, 
probability of overfishing, average annual variability (AAV) of the catch, fishery closures and 
overfishing. The catch and biomass performance metrics took the average catch and biomass 
from the 50 year management period. The probability of overfishing metric was calculated as the 
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proportion of years in which the true fishing mortality exceeded the fishing mortality limit during 
the 50 year management period. The AAV in catch was the average of the absolute value of the 
difference of catch from year to year across the 50 year management period. Fishery closures 
were calculated by taking the number of times fishing mortality in the model was set to zero for 
the fishing year and divided by the number of runs. Similarly the probability of fishery closure is 
considered when stock size (biomass) is ½ of the B/Bproxy and was calculated by summing the 
number of times the B/Bproxy ratio was below 0.5 and divided by the number of runs.  Means, 
maximums, minimums, standard deviations and percent change from one year to the next and 
between lag reduction methods were taken to compare scenario outcomes.  We estimated 95% 
confidence intervals for the medians of each performance metric and included a Bonferonni 
correction to account for multiple comparisons between controls and lag reduction methods.  A 
traditional method to calculate confidence intervals around the median was used because the 
median follows a normal distribution independent of the sample distribution (Samuels et al. 
2012).    

Results 

Management that used approaches to reduce data lag by using partial data in the last year 
generally performed better than the approach that increased DML by using the most recent full 
year of data.   Increases in assessment intervals increased the effects of DML with larger changes 
occurring between assessment intervals of one and two years and smaller changes between 
assessment intervals of two and three years across all performance metrics.  LR1 and LR2 
differed on average <2% from the results of C1 across all performance metrics and were 
effective in reducing the impacts of the two year DML. Life history also altered the effectiveness 
of lag reduction methods as the differences between the methods were smaller for the slow life 
history than the fast life history.     

Catch for each lag reduction method was higher compared to C2 for all life history, data quality 
and assessment interval scenarios (Figure 3). The effects of the lag reduction methods were 
relatively small for the good data scenarios. Differences in median average catch were larger in 
the poor data scenario.  Median average catch was 7% higher in C1 than C2. When compared to 
C2, the lag reduction methods achieved about a 7% increase in the median catch respectively for 
the scenario with fast life history and poor data.  Increasing assessment intervals also increased 
the differences in average catch among controls and lag reduction method comparisons slightly.  
For the data poor scenario with the slow life history, C1, LR1, LR2, and LR3 produced a median 
average catch that was about 4% higher than C2.   

The average biomass achieved by each of the lag reduction methods was similar to the results for 
catch (Figure 4). Overall, the lag reduction methods seemed to perform similar to C1.  The effect 
of reducing DML on average biomass was greater for the fast life history and poor data scenario 
with a 9% decrease in the median biomass between C1 and C2. Lag reduction methods resulted 
in 6-8.3% higher median biomass than the control with a two-year DML. However, in the slow 
life history scenarios with poor data quality median average biomass was 6% lower in C1 than 
C2.  Differences between C1 and LR1, LR2, and LR3 were less than 2% for the good data 
scenarios. Similarly, the lag reduction methods had performance that was similar to C1, 5-6% 
higher median average biomass compared to C2. Assessment interval effects for biomass were 
largest for the poor data scenarios with an average 3% increase with each additional year 
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between assessments and saw the largest differences between C2 and the lag reduction methods 
for 3 year assessment intervals across all scenarios.  The probability of fishery closure, when 
stock size (biomass) is ½ of the B/Bproxy, was much higher for both the data poor and slow life 
history scenarios, ranging from overfishing 2% of the time for the good data fast life history to 
46% of the time for the poor data slow life history. All of the lag reduction methods had similar 
performance, <1% difference between their probabilities of fishery closure. However, two year 
data lag scenarios had a higher probability of fishery closure compared to C1 and the lag 
reduction methods.    

Median probabilities of overfishing ranged from 29% to 43% across all methods and scenarios 
(Figure 5). The lag reduction methods generally resulted in a lower probability of overfishing 
than C2, except in the scenario with a fast life history and good data, which had very little 
difference among the methods.   Results of the slow life history good data scenario were very 
similar to those for the fast life history.  The mean probability of overfishing was about 18% 
higher for C1 than C2 for the poor data quality scenarios and 2% higher for the good data quality 
scenarios.  Changes between C1 and LR1 and LR2 for the both the good and poor data quality 
scenarios were virtually zero, while LR3 decreased the probability of overfishing by around 4% 
when compared C1. The effectiveness of lag reduction methods were largest with the 3 year 
assessment intervals across all scenarios with the largest effects seen in the poor data quality 
scenarios. 

Confidence intervals around the median catch AAVs indicated no significant differences in 
performance among the approaches for all of the scenarios (Figure 6).  The main differences in 
catch AAV were that it was lower in the good data quality scenarios than the poor data quality 
scenarios and that catch AAV generally decreased with increasing assessment interval. 

Fishery closures occurred rarely (2%) for the good data quality scenarios and increased to an 
average 4% for the poor data quality scenarios for C1, LR1, and LR2 (Figure 7). LR3 had the 
highest probability of fishery closures, 6%, in the poor data quality scenario.  Thus, LR3 
achieved similar probability of overfishing as the other lag reduction methods by closing the 
fishery during more years.  LR3 caused more frequent fishing closures due to low estimates of 
abundance in some years. The increases in biomass, decreases in probability of overfishing and 
increases in catch AAV seen in the above performance metrics are all results of these periods 
that no fishing was permitted in the model.  

Discussion 

Lag reduction methods can be successful in reducing the effects of DML to better achieve 
management goals.  Overall, lag reduction methods had the largest effects when the data quality 
was relatively poor, and effects were small when data quality was high.  Lag reduction methods 
that used age-composition information from the survey, but no or reduced information from the 
catch in the terminal year of the stock assessment achieved performance that was similar to C1 
with full data in the terminal year.  Life history, data quality, and assessment interval all played 
important roles in the effects of DML and effectiveness of lag reduction methods, but lag 
reduction methods provided benefits over waiting in almost all cases. However, the difference in 
performance was smallest in the good data quality scenarios.  Additionally, the benefits of using 
lag reduction methods were greatest with longer assessment intervals.   
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The effects of DML in our study were similar to previous findings (Brown et al. 2012,  Li et al. 
in review, Shertzer and Prager 2007, Sylvia Chapter 2) that delaying management can cause 
overfishing, decreased biomass, and decreased catches. Our results that there was very little 
effect of DML under the good data quality scenario agreed with those from Li et al. (in review).  
Potential costs of not using lag reduction methods especially in data poor scenarios are decreases 
in catch and higher chances of overfishing.  The only negative effects of using lag reduction 
methods only occurred with method LR3 where there was an increase in the probability of 
fishery closures. Methods LR1 and LR2 saw very similar performance to having full data for the 
last year of the assessment.   

Data quality can affect the ability of fisheries management to achieve its objectives 
(McGoodwinn et. al. 2007; Smith et. al. 2011).  In the poor data quality scenarios lag reduction 
methods provided significantly better performance over waiting in terms of increased catch and 
biomass and decreased probability of overfishing.  Management delays can cause an increase in 
the probability of stock collapse and decreases in catch when there is more uncertainty in 
assessments (Brown et al. 2010, Shertzer and Prager 2007). However, truly knowing whether or 
not a stock is in a data poor scenario may be difficult.  While many fisheries management bodies 
label data poor or data limited stocks as having insufficient information to estimate appropriate 
reference points and stock status (Pilling et al. 2008), our poor quality scenarios were described 
by larger observation error and larger process error that was not included in the SCAA models.  
Because simulation models usually portray a greatly simplified view of true systems, most U.S. 
stock assessments likely resemble our poor data quality scenarios more so than the good data 
quality scenarios.  

The effects of life history on fishery management performance from our study were similar to 
those found in previous studies (Shertzer and Prager 2007; De Leeuw et. al. 2008; Brown et. al. 
2012; Li et. al. in press; Sylvia Chapter 2). Species with a slower life history had smaller effects 
of DML across all performance metrics than species with faster life histories. While effects of 
DML were relatively small in the slow life history scenarios, they were still significant for the 
poor data scenario.   The smaller effect of DML with a slow life history may be due to lower 
fishing mortality rates (Flim of 0.07 for the slow life history compared to 0.19 for the fast life 
history) resulting in smaller population changes and greater stock stability (Patterson and 
Résimont 2007). Although slow life history species may have a smaller response to DML in the 
short term, longer lived species may also take much longer to recover once affected by damaging 
consequences of delay (Shertzer and Prager 2007).   

The effects of stock assessment interval on the management performance were similar to those 
from other studies (Mace et al. 2001; ICES 2012; Li et al., in review; Sylvia Chapter 2). Longer 
assessment intervals can mean larger decreases in average catch and biomass, increases in the 
probability of overfishing and increases in the catch AAV (Mace et al. 2001 and Li et al. in 
review).  Longer assessment intervals can degrade management performance, but the effects are 
usually less than the effects of DML (Sylvia Chapter 2). Interactions between assessment 
intervals and DML however can be much worse than any single effect. Comparing stocks 
managed with annual assessments to ones with assessments every two years caused up to a 4% 
increase in the effects of DML across performance metrics.  
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LR1 performed relatively well at meeting management goals and required the least amount of 
data. Even with missing age-composition of the catch in the terminal year of the assessment, 
performance metrics showed less than a 2% difference between a C1 and LR1.  Ono et al. (2014) 
similarly did not see strong differences with the addition of fishery age composition data to stock 
assessment. While our study used SCAA models, this technique may also be successfully applied 
to other stock assessment models. Seasonal separable VPA models, which estimated age-
compositions for years in which catch-at-age data is missing, provided similar estimates to 
conventional stock assessments for Norway pout (Trisopterus esmarkii) and sandeel (Ammodytes 
tobianus) (Cook and Reeves 1993).    

LR2 seemed to be the most successful at meeting management goals of the three lag reduction 
methods.  LR2 differed, on average, <1% from the results of the annual DML (C1) across all 
performance metrics and was effective in offsetting the impacts of the two year DMLs.  This 
method is currently used successfully with some stocks managed by the North Pacific Fishery 
Management Council in order to reach a one year data lag goal (AFSC 2014).  LR2 was most 
successful because it had the best age composition data. Having a reduced effective sample size 
in the last year should not have a large effect on estimation model performance if information 
from the history of the fishery is available (Ono et al. 2014).  Method LR2 was, however, the 
most data heavy of the three methods. While length-at-age data should be relatively fast to 
collect, additional data in the model may result in longer data collection preparation time and 
may still result in longer lags with comparatively small gains compared to LR1. While method 
LR3 produced similar average catch, biomass, and probability of overfishing with the other lag 
reduction methods, it also resulted in higher probabilities of fishery closure. Sampled catch-at-
age data may fail at mimicking the population age-structure well (Pope 1988) and may explain 
why a lack of age composition of the index may cause degrading model performance.   

Practical implementation of our results relies on the ability to collect informative age and length 
composition data, especially in years prior to the terminal year. C1 was used to represent an 
idealized case in which DML can be reduced to one year by either aging all the samples for that 
year or having a situation where growth does not change over time. Changes in fish growth 
overtime have been observed for many fish stocks (Thorson and Minte-Vera, 2014), however 
growth has remained relatively constant in many others (Hilborn and Minte-Vera, 2008; Thorson 
and Minte-Vera, 2014).  Our C2 approach is represents how age composition data are used in 
many U.S. fisheries management systems, where years with missing data are excluded from the 
stock assessment, thus adding to DML.  LR1 and LR2 represents fisheries with differing 
amounts of error between the data used in prior years and those used in the terminal year of the 
catch composition.  Results of LR1 and LR2 emphasize that even if temporal trends in growth 
are not substantial, assessments that use previous years’ age-length data may still perform well as 
long as there is some good age composition data is available.  Our reductions in effective sample 
size in the last year are probably larger than would be expected if inverse age-length keys were 
used to generate age compositions for the most recent year.  In fact, if growth has not changed 
over time, using all the age-length data to estimate expected size at age would likely outperform 
using individual year’s data because the sampling error would be reduced.  Our LR3 approach, 
however, demonstrated that there are limits to how little information can be included in the most 
recent year of the stock assessment and still obtain satisfactory management results.  When the 
age compositions for the fishery and the survey in the most recent year had very low effective 
sample sizes, the fishery performed poorly with more frequent closures.  Additionally, another 
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lag reduction method we tested that used no catch or survey age-composition data in the terminal 
year of the assessment was rarely able to estimate recruitment in the last year and was excluded 
from the study.     

While LR1 and LR2 had similar performance to C1, there are still additional potential cases 
where lag reduction methods may not succeed. Complications with missing age-composition 
data in the assessment such as failing to notice changing trends in recruitment and failure to 
forecast future conditions can be a likely result of these techniques (Mace et al. 2001). One 
strong assumption of the lag reduction methods is that there were no trends in growth over time. 
We would expect a breakdown in success of these methods if growth changed over time as 
growth rates must be explicitly estimated in age-structured population models (Quinn and 
Deriso, 1999).  Ono et al. (2014) tested the quality and quantity of length and age-composition 
data in three species and found that the usefulness of age-composition data decreased as the 
variation of the relationship between length and age increased. Species or data sets with high 
variation in length-at-age may be less successful in the use of lag reduction methods. Stocks 
which rely only on catch data are not likely candidates for lag reduction methods.      

Our research supports the conclusions of (Sylvia Chapter 2) that DML and assessment intervals 
can have a relatively large effect on fisheries management outcomes. The most effective way to 
decrease DML effects may be to decrease the fisheries management timeline (Shertzer and 
Prager 2007; Brown et al. 2010).  We agree that shortening the management process would be an 
effective means to mitigate problems associate with DML without decreasing the amount of data 
used in stock assessments (Sylvia, chapter 2).   Because changing the management system can be 
a lengthy process, we recommend adopting assessment procedures that attempt to fully use the 
most recent available data instead of waiting on more data (Shertzer and Prager 2007).   Having 
no catch age-composition, or using length data to infer age-composition in the terminal year of 
the assessment are both successful techniques in reducing DML and should be considered as 
such in future fisheries management plans.  
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Table 1. Design and details of lag reduction methods. Lag reduction method 1 is a control with 
annual data lag. Lag reduction method 2 is a control with two year data lag.  
 
 

 

 

 

Lag reduction 

method 

Full age‐composition in 

terminal year 

ESSsurvey(terminal 

year) 

ESScatch(terminal 

year) 

Data lag 

C1  Yes  200, 50*  200, 50*  1 

LR1  No  200, 50*  0  1 

LR2  No  200, 50*  50, 12*  1 

LR3  No  50, 12*  50, 12*  1 

C2  Yes  200, 50*  200, 50*  2 
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Table 2.  Equations governing the population and data-generating dynamics in the operating 
model 
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Table 3.  Symbols, specified life history and time-varying parameters of model. 
     Life history 

Parameter  Description  Slow Fast 

aR Age at recruitment   5 3 

amax Maximum age  20 12 

M Natural mortality rate  0.1 0.2 

R0 Unfished equilibrium recruitment  1x106 1x106 

h  Steepness  0.6 0.75 

a0 Age at length = 0  0 0 

L∞ Asymptotic maximum length  90 90 

k Growth rate  0.07 0.13 

b Length-weight relationship scalar  3.5 x 10-6 3.5 x 10-6 

c Length-weight relationship exponent  3.15 3.15 

m50 Age at 50% maturity  7 3.5 



 

91 

mslope Slope of maturity function   1 1 

sf50 Mean age at 50% selectivity in the fishery   1.75 3.5 

ss50 Mean age at 50% selectivity in the survey  1.3 2.6 

sfslope Slope of fishery selectivity function  1 1 

ssslope Slope of survey selectivity function  1 1 

 

 

σR 

 

Time Varying parameters 

Standard deviation of stock-recruit relationship 

 
 

 

0.77, 1.25 

0.44 

0.15 

0.3, 0.9 

0.1 

ΦR Autocorrelation in recruitment   

σM Standard deviation of time-varying M  

ΦM  Autocorrelation in M  

σf 

Standard deviation of age at 50% selectivity in 
fishery  

 

Φf  Autocorrelation in fishery selectivity            0.3, 0.9 

            0.15 

               0.29, 0.63 

 

                 

σC  Standard deviation of catch estimates  

σI  Standard deviation of survey estimates  

 Additional model variables 

a Age   

t Year                  

R Recruitment                  

S Spawning biomass  

sf Fishery selectivity  

ss Survey selectivity   

N Abundance                  

m maturity  

C Catch  
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I Index of abundance   

q Catchability   

Z Total mortality  

W  Weight-at-age  

m Maturity-at-age  

F Fishing mortality  

E Effective sample size of the catch/ index  

n Number of observations  

pobs Observed proportion at age   

pest Estimated proportions at age  

દ࢚ Multinomial function  

ℓ௧ Likelihood function   

ts  Error for selectivity   

tq  Error for catchability  

M  Error for natural mortality  

tI  Error for index of abundance   

tC   Error for catch  

σq  Standard deviation for catchability  

ρM Correlation coefficient of natural mortality   

ρs Correlation coefficient of selectivity   
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Table 4. 95 % confidence intervals for each life history and data scenarios, combinations are 
paired by stock assessment interval and lag reduction methods.  C1 represents control 1 of the 
lag reduction methods with an annual data lag, LRM1 is lag reduction method 1, LR2 is lag 
reduction method 2 and LRM3 is lag reduction method 3. C2 is control 2 of the lag reduction 
method with a 2 year data lag.  Confidence intervals were calculated around the median with a 
Bonferonni correction to account for multiple comparisons.   
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Fig. 1. Flow diagram of management strategy evaluation model with both operating and 
estimation models. 
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Fig. 2. Mid-Atlantic P* approach showing decreasing probability of overfishing with a declining 
B/B35% ratio 
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Fig. 3. Box plots of the catch for each life history and data scenarios. Scenario A is the fast life 
history with good data, scenario B is the fast life history with poor data. Scenario C is the slow 
life history with good data, and scenario D is the slow life history with poor data. C1 represents 
control 1 of the lag reduction methods with an annual data lag, LRM1 is lag reduction method 1, 
LR2 is lag reduction method 2 and LRM3 is lag reduction method 3. C2 is control 2 of the lag 
reduction method with a 2 year data lag.  The horizontal lines of the box plot show the median 
biomass and the whiskers represent the 10th and 90th percentiles.  
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Fig. 4. Box plots of the biomass for each life history and data scenarios. Scenario A is the fast 
life history with good data, scenario B is the fast life history with poor data. Scenario C is the 
slow life history with good data, and scenario D is the slow life history with poor data. C1 
represents control 1 of the lag reduction methods with an annual data lag, LRM1 is lag reduction 
method 1, LR2 is lag reduction method 2 and LRM3 is lag reduction method 3. C2 is control 2 of 
the lag reduction method with a 2 year data lag.  The horizontal lines of the box plot show the 
median biomass and the whiskers represent the 10th and 90th percentiles.  
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Fig. 5. Box plots of the probability of overfishing for each life history and data scenarios. 
Scenario A is the fast life history with good data, scenario B is the fast life history with poor 
data. Scenario C is the slow life history with good data, and scenario D is the slow life history 
with poor data. C1 represents control 1 of the lag reduction methods with an annual data lag, 
LR1 is lag reduction method 1, LR2 is lag reduction method 2 and LR3 is lag reduction method 
3. C2 is control 2 of the lag reduction method with a 2 year data lag.  The horizontal lines of the 
box plot show the median biomass and the whiskers represent the 10th and 90th percentiles.  
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Fig. 6. Box plots of the AAV of catch for each life history and data scenarios. Scenario A is the 
fast life history with good data, scenario B is the fast life history with poor data. Scenario C is 
the slow life history with good data, and scenario D is the slow life history with poor data. C1 
represents control 1 of the lag reduction methods with an annual data lag, LR1 is lag reduction 
method 1, LR2 is lag reduction method 2 and LR3 is lag reduction method 3. C2 is control 2 of 
the lag reduction method with a 2 year data lag.  The horizontal lines of the box plot show the 
median biomass and the whiskers represent the 10th and 90th percentiles.  
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Fig. 7. Fishery closure percentage for each life history and data scenarios. Scenario A is the fast 
life history with good data, scenario B is the fast life history with poor data. Scenario C is the 
slow life history with good data, and scenario D is the slow life history with poor data. C1 
represents control 1 of the lag reduction methods with an annual data lag, LR1 is lag reduction 
method 1, LR2 is lag reduction method 2 and LR3 is lag reduction method 3. C2 is control 2 of 
the lag reduction method with a 2 year data lag.  
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Abstract 

Management strategy evaluation (MSE) modeling is often used in fisheries science to evaluate 
the effects of different management. MSE models typically include a stock assessment 
component to estimate population size and management reference points based on data generated 
within the model, but including a full assessment within the model can be computationally 
intensive.  A commonly used alternative to the full assessment approach is to simulate the error 
from the stock assessment as a stochastic process with an assumed level of autocorrelated 
estimation error.  There is little guidance, however, on what might be a reasonable assumed 
amount of autocorrelation, and what factors might influence this amount.  In this paper we 
estimated the amount of temporal autocorrelation in errors of estimated biomass and recruitment 
from statistical catch at age (SCAA) stock assessment models over a series of scenarios spanning 
life histories, exploitation levels, recruitment variability, and data quality.  Autocorrelation in the 
error in biomass estimates (߶ௌ) was positive and relatively high, with median estimates ranging 
between 0.6 and 0.9.  Estimates were highest for the slow life history and lowest for the fast life 
history.  Exploitation level also affected the amount of autocorrelation, with higher values for 
lightly exploited populations.  On average, however, estimates of ߶ௌ did not change over time as 
more data were included in the assessment, and were independent of whether or not a harvest 
policy was applied.  Recruitment variability and data quality had relatively minor effects on 
autocorrelation of errors.   

Keywords: Management strategy evaluation, stock assessment error; lag-1 autocorrelation 
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Introduction 

Simulation modeling is often used in fisheries science to evaluate the effects management 
decisions have on a resource (e.g. a population, assemblage, or community) and on stakeholders 
(Milner-Gulland et al. 2010).  This class of simulation models is referred to as management 
strategy evaluation (MSE) or the management procedure (MP) approach (Butterworth et al. 
2010).  The MSE approach in fisheries has become a widely used tool to aid fisheries managers 
in variety of areas.  For example, MSE has been used to identify robust harvest control rules in 
both data-rich (Punt et al. 2008; A’Mar et al. 2009) and data-poor situations (Wiedenmann et al. 
2013; Carruthers et al. 2014), as well as for selecting effective regulations for controlling 
recreational harvests (Miller et al. 2010).   

An MSE model typically has three components, an operating model, an assessment model, and a 
management model, and these components are designed to mimic the resource dynamics and 
scientific assessment process, and how these interact with the management options being tested.  
In the operating model the population(s) of interest is projected through time, and the true status 
is known.  Data are generated in the operating model based on the true state and an observation 
process, usually with some level of observation error. These data are then used in the assessment 
model to estimate population status.  The estimated status in the model informs the management 
model and is used in conjunction with a harvest strategy to determine the total allowable catch 
and possibly the regulations to achieve that catch.  The catch is then removed from the 
population in the following time step, and this loop is repeated for a number of years and model 
iterations to account for uncertainty in the population, assessment and management dynamics.   

For the stock assessment model of the MSE loop, two approaches are typically used, termed the 
“full” or “stochastic process” approaches (ICES 2013).  The full approach implements a 
complete stock assessment model, such as statistical catch at age model (SCAA) that estimates a 
suite of parameters and produces estimates over the entire time series of data availability (A’Mar 
et al. 2009; Punt et al. 2002).  Depending upon the assessment model being used and the data 
being generated, a large number of parameters may be estimated (100+), which can cause run 
times for the MSE to be quite lengthy.  For example, most SCAA models require numerical 
solutions and search over the parameter space to find the best parameter estimates, requiring 
hundreds or thousands of iterations.  This can cause run times to be 100-1000 times longer than 
an MSE without an integrated assessment model.   

A commonly used alternative to the full approach is to simulate the error from the stock 
assessment as a stochastic process.  The stochastic process approach greatly reduces the 
computation time of the MSE, which allows for a greater exploration of management options and 
uncertainty scenarios.  One example of the stochastic process approach, the time series of 
estimated biomass (Sest) is modeled as a lag-1 autocorrelated error process around the true 
biomass (S) 

 ܵ௘௦௧ሺݐሻ ൌ ܵ݁ఌೄሺ௧ሻି଴.ହఙೄ
మ
 

ሻݐௌሺߝ  ൌ ߶ௌߝௌሺݐ െ 1ሻ ൅ ඥ1 െ ߶ௌ
ଶ߮ௌሺݐሻ   (1) 
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where ߶ௌ determines the degree of autocorrelation in the estimates (Punt et al. 2008).  Similar 
approaches have used a first order auto regressive process (Irwin et al. 2008; Wilberg et al. 
2008).  In the stochastic process approach all the error dynamics are controlled by specifying 
different levels of ߪௌ

ଶ and ߶ௌ.   Drawbacks of the stochastic process stock assessment approach 
are that it does not produce the full range of output of an assessment and it may not capture 
complex feedbacks between the state of the system and the variance, bias, and correlation of 
errors.  If additional assessment output is needed in the MSE loop (e.g. fishery selectivity, 
recruitment time series), then additional assumptions must be made by the analyst.  For example, 
Irwin et al. (2008) generated estimates of abundance at age using the same error structure used to 
estimate biomass, such that an overestimate of biomass of 10% was the result of an overestimate 
of abundance of 10% in all age classes. The stochastic process approach also requires specifying 
the variance and autocorrelation (e.g., ߶ௌ).  Simulation studies will often use a single value for 
߶ௌ (e.g. Irwin et al. 2008) or a range of values (e.g. Punt et al. 2008), but in general, the assumed 
values are high (ߩௌ > 0.7).  While the assumption of high positive autocorrelation of assessment 
errors seems reasonable based on the multi-year effects that are produced in age-structured 
models (e.g., Mohn 1999), there does not appear to be a foundation to assist researchers in 
choosing the appropriate values.   

Given the increasing importance of MSE models in fisheries management (Butterworth et al. 
2009; Milner-Gulland et al. 2010), and the potential impact the assumed value of ߶ௌ can have on 
the results when using the stochastic process assessment approach, it would be valuable to have a 
more formal basis for for implementing the stochastic approach in MSEs.  In this study we used 
a simulation model to estimate the degree of temporal autocorrelation in biomass estimates from 
a full SCAA assessment model.  The simulation model was run over a range of species life 
histories and exploitation intensities to identify potential factors controlling the amount of 
autocorrelation.   

Methods 

To understand the temporal autocorrelation of errors in stock assessment estimates, the estimated 
values from a stock assessment model must be compared to the true values.  Because the true 
dynamics (e.g. biomass, recruitment) are unknown for real world systems, we conducted a 
simulation study in which we simulated the true population dynamics and applied a stock 
assessment model  over a range of scenarios encompassing different life histories, exploitation 
histories, and levels of data quality.  The simulation model was developed in AD Model Builder 
(Fournier et al., 2012), and contains three main components. The foundation of the simulation is 
the operating model, which determines the population dynamics of the stock and how data are 
generated.  Data generated in the operating model are based on the true dynamics within the 
model with some specified amount of observation error.  The operating model generates data on 
fishery harvests, as well as a fishery-independent index of abundance.  These data are then used 
in the assessment model to estimate stock status and biological reference points.  The assessment 
model was an SCAA model (Fournier and Archibald 1982), and output from the assessment is 
used in the management model to determine the catch limit using a harvest policy.  The catch 
limit estimated in the management model is removed from the population, without 
implementation error, and the simulation loop continued for a set number of years.  This process 
is repeated many times for each model specification (e.g. life history) to account for the 
variability in the population dynamics, data generation, and assessment estimation.  At the end of 
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each run, the true and estimated values of biomass and recruitment are stored and used to 
calculate the amount of autocorrelation in the error in these estimates.   Our simulation model 
evaluated the effects of two management models to determine how management may affect the 
quality of assessment estimates.   

Operating, Assessment, and Management Models 

The population dynamics followed an age-structured model (Quinn and Deriso 1999) with the 
equations governing the dynamics in Table 1.  Equations used in the model are referenced by 
their number in Table 1, such that the numerical abundance-at-age is referred to as equation 
T1.1.  The population began at unfished equilibrium abundance at age in year 1 of the 
simulation.  Annual abundance of recruited ages was determined from the abundance of that 
cohort the previous year, decreased by continuous natural and fishing mortality (equation T1.1).  
Recruitment to the population followed the Beverton-Holt stock-recruit relationship, with bias-
corrected lognormal stochasticity and autocorrelated deviations (equation T1.2).    Parameters 
controlling the degree of autocorrelation and variability in recruitment (Table 2) were based on 
the recruitment meta-analysis of Thorson et al. (2014). Parameters for the Beverton-Holt model 
were derived from the unfished spawning biomass, unfished recruitment, and the steepness 
parameter (equation T1.3), where steepness represents the fraction of unfished recruitment that 
results when the spawning biomass is reduced to 20% of the unfished level.  Total spawning 
biomass in a given year was calculated by summing the product of the maturity at age, weight at 
age and abundance at age over all recruited age classes (equation T1.4).   Weight at age was an 
allometric function of length at age, which followed a von Bertalanffy growth function 
(equations T1.5 and T1.6).  The proportion mature at age was calculated using a logistic function 
(equation T1.7).  Length, weight, and maturity at age were fixed for a given species life history.   

The model contained a single fishery, with a logistic selectivity function (equation T1.8).  The 
selectivity ogive varied over time as the parameter that determines the age at 50% selectivity 
varies annually in an autocorrelated manner (equation T1.8), although the source for the changes 
was not modeled explicitly.  Because both natural (M) and fishing mortality (F) occurred 
continuously throughout the year, catch was calculated using the Baranov catch equation (Quinn 
and Deriso 1999; equation T1.9).      

Each model run was divided into two periods.  The initial period covers 30 years, while the 
management period covers 25 years.  The population started the initial period in the unfished 
state.  A single fishery developed during the initial period, which was described by a linear 
increase in fishing mortality (F) until year 15, followed by a constant at the peak fishing 
mortality for the remainder of the initial period.  The intensity of fishing (F = 0.5, 1.0, 2.5 × 
FMSY for the light, moderate, or heavy exploitation scenarios) at the plateau during this period 
along with the pattern of recruitment determined the population abundance at the start of the 
management period.  

At the start of management period (year 31) the population was first assessed using data 
generated during the initial period, starting in year 10, and with a 1-year lag between the last year 
of the data collected and when the assessment is done.  Thus, the estimation model did not 
include the full fishing history for the stock. Fishery catch data (both total and proportions-at-
age) and a fishery-independent survey-derived index of abundance (both total and proportions-
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at-age) were generated annually.  These data were generated by applying observation error to the 
true values (equations T1.10 - T1.14) using lognormal distributions for the total catch and index 
of abundance and multinomial distributions for the proportions at age.  We included two 
scenarios of coefficient of variation for the total catch and index data and effective sample sizes 
for the proportions at age to explore the interactions between data quality and the autocorrelation 
in assessment estimates (Table 2).   

The time series of catch and survey data were input into the SCAA model to estimate the 
abundance at age and fishing mortality rates in each year.  The parameters estimated in the 
SCAA were the initial abundance (associated with the first year of data), recruitments and 
fishing mortality rates (across years), fishery selectivity parameters, and the survey catchability.  
Parameters were estimated using a maximum likelihood approach with lognormal likelihood 
functions for the total catch and total index of abundance and multinomial likelihood functions 
for the proportions at age in the catch and index of abundance (Table 3).  The selectivity and 
survey catchability parameters that varied over time in the operating model were assumed to be 
constant over time in the SCAA, and natural mortality was assumed to be constant at the true 
mean value.  All other required SCAA inputs (i.e., maturity- and weight-at-age) were set to the 
true values specified in the operating model.  The SCAA model also estimated the spawning 
potential ratio (SPR) based reference points to calculate a target catch (NEFSC 2002).  The target 
fishing mortality rate was specified at F35% for all life histories. The spawning biomass reference 
point and catch limit were calculated by multiplying the SPR and yield-per-recruit (YPR) from 
fishing at F35%, respectively, by the mean estimate of recruitment over the time series (NEFSC 
2002; Haltuch et al. 2008).  Because the weight at age and maturity at age were fixed at the true 
values, the SPR-based reference points varied across assessments based on the estimated fishery 
selectivity and the estimated mean recruitment.  Assessments were conducted annually during 
years 31 – 55.   

We explored a constant fishing mortality rate scenario and one in which the target fishing 
mortality rate was F35%.  In the first management scenario, no harvest policy is used and the F 
throughout the management period is fixed at the plateau value from the initial period (0.5, 1.0 or 
2.0 x FMSY).  In this case, the population experienced constant fishing mortality rates during the 
assessment period years 31 – 55.  In the second management scenario, a harvest policy was 
applied whereby the target catch was estimated using the abundance in the terminal year and the 
F35% from the assessment model; this level of catch is removed from the population the following 
year by calculating the resulting F using the Baranov catch equation (Quinn and Deriso 1999).  
Fishing at F35% is reasonably close to the determinsistic FMSY for all exploitation scenarios.    

Parameterization and Model Runs 

We ran the model over a range of scenarios to identify factors affecting the level of 
autocorrelation in the estimation error from the assessment model.  We explored three life 
histories, three exploitation histories, two management scenarios, and two levels of data quality 
and recruitment variability (Table 4).  The different life histories explored were ‘slow’, 
‘medium’ and ‘fast’.   The slow life history had slow growth, late maturation, and low 
productivity.  In contrast, the fast life history had rapid growth, early maturation, and high 
productivity.  The medium life history was between the slow and fast life histories.  For each life 
history, we set the maximum age (7, 12, and 20 years for the fast, medium and slow life 
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histories, respectively), mean natural mortality rate (0.4, 0.2, and 0.1), and steepness of the stock-
recruitment function (0.9, 0.75, and 0.6).  The maximum age was an aggregate age class.  All 
other life history parameters were either fixed across life histories (L∞ and the length-weight 
parameters b and c) or determined from the other parameters.  The mean natural mortality, M, 
was used to determine growth rate, k = M/1.5, and age at 50% maturity, m50% =  M / 1.4 
(Charnov and Berrigan 1991; Charnov et al. 1993; Frisk et al. 2001), which then determined the 
initial age at 50% selectivity in the fishery ( sf,50%(t=1) = m50%).  Both M and sf,50% varied through 
time in an autocorrelated manner; Eqn T1.8).  For the survey, age at 50% selectivity was lower 
than that of the fishery, ss,50% = 0.75 sf,50%(t=1), and was rounded down to the nearest integer to 
determine the age at recruitment to the population, ܽோ ൌ උݏ௦,ହ଴%ඏ .   

For the data quality scenarios, we modeled a “good” and “poor” case, whereby several factors 
were adjusted to affect assessment performance (Table 4). For each case we varied the CV of the 
observation error in the survey (lower for the good scenario), the number of samples collected to 
generate age structured data (higher for the good case), and the amount of autocorrelation in the 
time-varying parameters (lower in the good scenario).  In addition, we explored two levels of 
recruitment variability, with the levels of variability based on the meta-analysis of Thorson et al. 
(2014).   

For each scenario, 1000 iterations were run.  At the end of each run, the terminal estimate of 
biomass and recruitment from each assessment was stored along with the true values, and we 
calculated the amount of lag-1 autocorrelation in the error of biomass and recruitment estimates 
using a maximum likelihood approach (Table 3).   

Results 

For the model runs with a constant fishing mortality rate during the assessment period (runs 1-4 
in Table 4), estimates of the lag-1 autocorrelation (߶ௌ) in biomass errors were always positive, 
with the majority of values between 0.5 and 1.0.  Life history and exploitation history had clear 
effects on ߶ௌ (Figure 2).   Across life histories, ߶ௌ was highest for the slow life history and 
lowest for the fast life history, with the medium one in between.  Median estimates of ߶ௌ ranged 
between 0.62 and 0.87 for fast life history, between 0.74 and 0.92 for the medium life history, 
and between 0.86 and 0.94 for the slow life history.  For a particular life history, estimates of ߶ௌ 
increased as the fishing mortality rate decreased.  However, the magnitude of the differences 
across exploitation scenarios varied with the species life history. The largest differences in  ߶ௌ 
across fishing mortality rates exhibited with the fast life history, and the smallest were for the 
slow life history (Figure 2). Results from the scenario with higher recruitment variability were 
about that same as those from the scenario with lower recruitment variability. Poorer data quality 
usually resulted in slightly higher values of ߶ௌ across life history, exploitation, and recruitment 
variability levels. 

When a harvest policy was applied that used the stock assessment to estimate the target catch 
(model runs 5-8 in Table 4) the effect was a reduction in the range of potential estimates for ߶ௌ.  
Median estimates of ߶ௌ ranged between 0.64 and 0.69 for fast life history, between 0.71 and 0.81 
for the medium life history, and between 0.85 and 0.87 for the slow life history (Table 5).  
Compared to the runs where no harvest policy was applied, the medians of ߶ௌ when a harvest 
policy was applied were similar to the moderate fishing mortality rate runs.  Across life histories, 
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applying the harvest policy resulted in the largest change (generally a decline) in estimates of ߶ௌ 
for the fast life history , and the smallest change for the slow life history (largest declines 
observed were 0.2 and 0.07, respectively; Table 5).  Within a particular life history, the impact of 
the harvest policy had the greatest effect on estimates of ߶ௌ for the light exploitation scenario 
(Table 5).   

To determine if ߶ௌ changed over the time as more data were included in the assessment, we split 
the time series in half and calculated ߶ௌ for each half, then determined the difference between 
the estimates (late ߶ௌ– early ߶ௌ).  The median difference was centered around 0 for all model 
runs, but the variability depended upon exploitation history and whether or not a harvest policy 
was applied.  Using a harvest policy increased the range of ߶ௌ for the light exploitation scenario 
and decreased the range for the heavy exploitation scenario (Figure 3).  

The impact of exploitation history on estimates of ߶ௌ was explored by relating the estimates of 
߶ௌ with the mean fishing mortality rate (relative to the true F35%) over the entire estimation 
period.  There was a significant negative relationship between the mean F / F35% and the 
estimated ߶ௌ, such that increasing fishing pressure resulted in lower estimates of ߶ௌ (Figure 4), 
although this relationship only explained 22% of the variability in ߶ௌ.   

For each time series of stock assessment estimates we also calculated the autocorrelation in the 
recruitment error, ߶ோ, across model runs (Figure 2 and Table 5). The pattern of ߶ோ across life 
histories followed the opposite trend compared to ߶ௌ, with generally higher estimates of ߶ோ for 
the fast life history and the lowest estimates for the slow life history.  Estimated ߶ோ was 
positively correlated with ߶ௌ, but  ߶ோ was usually less than ߶ௌ (Figure 5).  For the fast life 
history, estimates of ߶ோ  and ߶ௌ were scattered around the 1:1 line, although the slope of a linear 
regression through the data is significantly different from 1 (95% CI: 0.694 – 0.726).  For both 
the medium and slow life histories, the majority of estimates are well below the 1:1 line, also 
with slopes different from unity (95% CI: 0.694 – 0.736 for the medium life history and 0.47 – 
0.61 for the slow life history).    

Discussion 

In this paper we estimated the amount of temporal autocorrelation in errors of estimated biomass 
and recruitment from SCAA stock assessment models over a series of scenarios spanning life 
histories, exploitation levels, recruitment variability, and data quality.  Autocorrelation in the 
error in biomass estimates (߶ௌ) was positive and relatively high, with median estimates ranging 
between 0.6 and 0.9.  Estimates were highest for the slow life history and lowest for the fast life 
history.  Exploitation level also affected the amount of autocorrelation, with higher values for 
lightly exploited populations.  On average, however, estimates of ߶ௌ did not change over time as 
more data were included in the assessment, and were independent of whether or not a harvest 
policy was applied.  In contrast, recruitment variability and data quality had relatively minor 
effects on autocorrelation of errors.   

In general, higher autocorrelation in the error in biomass estimates indicates poorer estimation by 
the stock assessment model, as estimates are more consistently above or below the true value.  
Therefore it is not surprising that estimation was poorer for the scenarios with light exploitation, 
as there was reduced contrast in the data to help with the estimation.  It is well known that 



 

110 

increased contrast in data such as a time series of relative abundance is more informative and 
improves parameter estimation in a range of assessment models (e.g., Hilborn and Mangel 1997; 
Magnusson and Hilborn 2007).  For SCAA models, Magnusson and Hilborn (2006) showed that 
data with the additional contrast of a return trip provide no additional information to the model, 
and do not result in and increased ability to estimate parameters.  Additionally, our results agree 
with other simulation studies that found SCAA models have substantially lower accuracy in low 
fishing mortality rate scenarios than high fishing mortality rate scenarios (Bence et al. 1993; 
Wilberg and Bence 2006).    Although higher levels of fishing mortality improved estimation 
(Figure 5), a return trip, which occurred for the heavy exploitation scenarios with a harvest 
policy applied, resulted in comparable or slightly higher estimates of ߶ௌ ( between -0.05 and 
0; Table 5).   

Life history also had an important effect on ߶ௌ.  Estimates of ߶ௌ increased with increasing 
longevity.  A key difference across life history scenarios is the relative contribution of recruits to 
the total population biomass.  For the fast life history with fewer age classes, higher growth rates 
and higher productivity at low population sizes, recruits comprise a greater proportion of the 
population biomass compared to the medium and slow life histories.  Recruitment estimates 
generally had lower autocorrelation than biomass estimates (Figure 5), so it follows that for cases 
where recruits comprise a sizeable proportion of the biomass (the fast life history and the heavy 
exploitation scenario) that ߶ௌwould be lower.  Additionally, the fishing mortality rates were 
lower, on average, for the slow life history than for the medium or fast life histories.   

Our results have a number of implications for fisheries management simulations and 
development of MSE models.   First, for MSE studies relying on the stochastic process method 
of simulating assessments, including autocorrelation of assessment errors is necessary to 
replicate the outcomes of actual assessment model.  Our results provide a range of estimates that 
can inform choices of the crucial ߶ௌ parameter.  In studies using the stochastic process approach, 
higher values have typically been assumed.  For example, Irwin et al. (2008) and Wilberg et al. 
(2008) fixed ߶ௌ = 0.7 in their study of harvest policies for yellow perch (Perca flavescens) in 
Lake Michigan.   Punt et al. (2008) explored a range of values ߶ௌ = 0, 0.71, and 0.87 in their 
study of threshold control rules for groundfish along the western U.S., and they found that the 
level of ߶ௌ had an effect on the interannual variability in catches resulting from a particular 
management policy, an important factor for consideration when selecting a harvest option.  
While the estimates of autocorrelation used in these studies are within the range of values 
identified in our simulations, a broader range of values, both below 0.7 and above 0.9 may be 
warranted under some conditions.  The selection of a particular value should be tied to the life 
history and exploitation level of the species being modeled, with lower values of ߶ௌ and ߶ோ in 
scenarios with high exploitation rates and fast life histories (Figure 2; Table 5).   

Another important implication for MSE modeling is that the error in biomass and recruitment 
estimates does not show the same level of autocorrelation.  Our study found that recruitment 
error autocorrelation, ߶ோ, was generally lower than biomass ߶ௌ, particularly for the medium and 
slow life histories (Figure 5).  When using the stochastic process MSE assessment approach, one 
way to estimate recruitments is to use the true age structure and the biomass estimated using 
Eqn. 1 (e.g. Irwin et a. 2008), but this method assumes the same level of autocorrelation in 
biomass and recruitment estimates. Our analyses show that an alternative approach to estimating 
recruitment may be more appropriate when using the stochastic process assessment method.  One 
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possibility is to draw recruitment and biomass errors from a multivariate distribution with a 
positive correlation between the errors depending upon the life history of the species being 
modeled (Table 5).    

Ideally, parameters of a stochastic process could be chosen such that the full stock assessment 
and stochastic process approaches would result in the same general predictions for a given case 
study.    The results of studies that have compared full and shortcut assessment approaches in 
MSE models indicate that the different assessment approaches can lead to differing predictions 
for what the optimal harvest policy may be under certain conditions (ICES 2013).  This result 
does not necessarily invalidate the use of the stochastic process assessment approach in MSE 
models.  Rather, it emphasizes the importance of carefully choosing the parameters for the 
stochastic process approach.  For example, a full age-structured assessment will provide 
estimates (with error) of recruitments, selectivities, and possibly biological reference points.  If 
the management system being modeled requires short term projections, then these estimates can 
be used in the projections, and error will propagate through time, potentially influencing the 
performance of a particular harvest policy.  In contrast, the stochastic process approach does not 
produce these estimates, so assumptions must be made if projections are to be done.  For 
example, selectivity at age may be fixed at the true value, and recruitments may be generated 
using the estimated biomass and the true proportions at age (Irwin et al. 2008). If a stochastic 
process approach is going to be used in an MSE, investigators should conduct some simulation 
studies to identify levels of autocorrelation in errors that allow the stochastic process to closely 
match the pattern of errors from full assessments.  

Managing fish stocks in the face of uncertainty is a key challenge for fisheries managers, and 
MSE models are an essential tool to help identify robust management practices across a range of 
uncertain outcomes.  However, MSE models that include a full stock assessment are limited in 
the number of scenarios that can be explored due to the sometimes lengthy computation time.  
Using the stochastic process approach within an MSE is a useful alternative, particularly when a 
large number of scenarios must be explored, and the results of this paper can be used as a guide 
in the selection of appropriate levels of autocorrelation in error in biomass and recruitment 
estimates.  Future work, however, is needed to identify if either the full stock assessment or 
stochastic process approach is more robust in identifying optimal management policies because 
both approaches rely on substantial simplifications of complex processes.   
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Table 1.  Equations governing the population and data-generating dynamics in the operating model.  

  Equation  Description 

  Population dynamics   

1 

ܰሺܽ, ሻݐ ൌ

ە
ۖ
۔

ۖ
																		ሻݐሺܴۓ ܽ ൌ ܽோ 	
ܰሺܽ െ 1, ݐ െ 1ሻ݁ି௓ሺ௔ିଵ,௧ିଵሻ ܽோ ൏ ܽ ൏ ܽ௠௔௫ 	
ܰሺܽ െ 1, ݐ െ 1ሻ݁ି௓ሺ௔ିଵ,௧ିଵሻ ൅ 								ܽ ൌ ܽ௠௔௫																				
ܰሺܽ, ݐ െ 1ሻ݁ି௓ሺ௔,௧ିଵሻ 	

 

Numerical 

abundance at 

age 

2 
ܴሺݐሻ ൌ

ܵሺݐ െ ܽோሻ

ߙ ൅ ݐሺܵߚ െ ܽோሻ
݁ఌೃି଴.ହఙೃ

మ
 

ߙ ൌ
ܵ଴ሺ1 െ ݄ሻ
4݄ܴ଴

ߚ											 ൌ
5݄ െ 1
4݄ܴ଴

 

ሻݐோሺߝ ൌ ݐோሺߝோߩ െ 1ሻ ൅ ට1 െ ோߩ
ଶ߮ோሺݐሻ 

	߮ோሺݐሻ~ܰሺ0, ோߪ
ଶሻ 

 

 

Stock‐recruit 

relationship 

3  ܵሺݐሻ ൌ෍݉ሺܽሻݓሺܽሻܰሺܽ, ሻݐ
௔

  Spawning 

biomass 

4  ܼሺܽ, ሻݐ ൌ ሻݐሺܯ ൅ ,ሺܽݏ  ሻݐሺܨሻݐ

ሻݐሺܯ ൌ ഥ݁ఌಾሺ௧ሻି଴.ହఙಾܯ
మ
 

ሻݐெሺߝ ൌ ݐெሺߝெߩ െ 1ሻ ൅ ට1 െ ெߩ
ଶ ߮ெሺݐሻ 

	߮ெሺݐሻ~ܰሺ0, ெߪ
ଶ ሻ 

 

 

 

Total mortality 

with time‐

varying natural 

mortality 
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  Life history

 

 

5  ሺܽሻܮ ൌ ஶ൫1ܮ െ ݁ି௞ሺ௔ି௔బ൯  Length at age 

6  ሺܽሻݓ ൌ  ሺܽሻ௖ܮܾ Weight at 

length 

7 
݉ሺܽሻ ൌ

1

1 ൅ ݁
ି
௔ି௠ఱబ
௠ೞ೗೚೛೐

 
Maturity at age 

   

Fishing dynamics 

 

8 

ሻݐହ଴%ሺݏ ൌ ହ଴%݁ఌೞሺ௧ሻି଴.ହఙೞݏ̅
మ
 

ሻݐ௦ሺߝ ൌ ݐ௦ሺߝ௦ߩ െ 1ሻ1ሻ ൅ ඥ1 െ  ሻሻݐଶ߮ሺߩ

	߮ሺݐሻ~ܰሺ0,  ௦ଶሻߪ

 

,ሺܽݏ	 ሻݐ ൌ
ଵ

ଵା௘
ష
ೌషೞఱబሺ೟ሻ
ೞೞ೗೚೛೐

 

 

 

 

 

Selectivity at 

age in fishery or 

survey, with 

time varying 

selectivity (only 

in the fishery) 

9 
,ሺܽܥ ሻݐ ൌ

,ሺܽݏ ሻݐሺܨሻݐ

ܼሺܽ, ሻݐ
,ሺܽሻܰሺܽݓ ሻ൫1ݐ െ ݁ି௓ሺ௔,௧ሻ൯ 

ሻݐሺܥ ൌ෍ܥሺܽ, ሻݐ
௔

 

 

 

Total catch  

  Data‐generating dynamics   
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10  ሻݐ௢௕௦ሺܥ ൌ ሻఌ಴ሺ௧ሻି଴.ହఙ಴ݐሺܥ
మ
 

,ሻ~ܰሺ0ݐ஼ሺߝ ஼ߪ
ଶሻ 

 

Observed catch 

11  ,ሺܽܫ ሻݐ ൌ ,௦ሺܽሻܰሺܽݏሻݐሺݍ  ሻݐ

ሻݐሺܫ ൌ෍ܫሺܽ, ሻݐ
௔

 

ሻݐሺݍ ൌ ఌ೜ሺ௧ሻି଴.ହఙ೜݁ݍ
మ
 

,ሻ~ܰሺ0ݐሺߝ	  ௤ଶሻߪ

 

 

True index of 

abundance 

12  ሻݐ௢௕௦ሺܫ ൌ ሻఌ಺ሺ௧ሻି଴.ହఙ಺ݐሺܫ
మ
 

,ሻ~ܰሺ0ݐூሺߝ ூߪ
ଶሻ 

 

Observed index 

of abundance 

13 
ሻݐ௢௕௦ሺܘ ൌ

1
݊
દሺݐሻ 

દሺݐሻ~݈ܽ݅݉݋݊݅ݐ݈ݑܯሺ݊,  ሻሻݐሺܘ

ሻݐሺܘ ൌ
1
ሻݐሺܫ

ሺܫሺܽோ, ,ሻݐ … , ,ሺܽ௠௔௫ܫ  ሻሻݐ

 

Observed 

vector of 

propotion‐at‐

age in fishery f 
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Table 2.  Parameters values  used in the model.  Life history – invariant parameters are presented at the 
top, with multiple values explored for the “good” and “bad” assessment cases.   

 

  

Parameter Description Value

R standard deviation of stock-recruit relationship 0.77, 1.25

R autocorrelation in recruitment 0.44

M standard deviation of time-varying  M 0.15

M autocorrelation in M 0.3, 0.9

f standard deviation of age at 50% selectivity in fishery 0.1

f autocorrelation in fishery selectivity 0.3, 0.9

C standard deviation of catch estimates 0.15

I standard deviation of survey estimates 0.29, 0.63

EC effective sample size of the catch 200, 50

EI effective sample size of the survey 200, 50

Slow Medium Fast

aR Age at recruitment (to population) 5 3 1

amax Maximum age 20 12 7

M Mean natural mortality rate 0.1 0.2 0.4

R0 Virgin recruitment 1x106 1x106 1x106

h Steepness 0.6 0.75 0.9

a0 Age at length=0 0 0 0

L∞ Maximum length 90 90 90

k Growth rate 0.07 0.13 0.27

b1 L-W scalar 3.0 x 10-6 3.0 x 10-6 3.0 x 10-6

b2 L-W exponent 3 3 3

m50 Age at 50% maturity 7 3.5 1.75

s50 mean age at 50% selectivity in fishery 7 3.5 1.75

s50 mean age at 50% selectivity in fishery 5.3 2.6 1.3

mslope Slope of maturity function 1 1 1

sslope Slope of selectivity function 1 1 1
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Table 3.  Likelihood functions used in the statistical catch at age (SCAA) stock assessment model, and 
used to estimate the amount of lag-1 autcorrelation in the error of the stock assessment estimates.    

Equation  Description 

ࣦௌ஼஺஺ ൌ෍ℓሺ݅ሻ
௜

  Full likelihood for SCAA 

model 

ℓሺ1ሻ ൌ 0.5݊ logሺߪ஼
ଶሻ ൅෍൫log൫ܥ௢௕௦ሺݐሻ൯ െ logሺܥ௘௦௧ሺݐሻሻ൯

ଶ

௧

  Likelihood component for 

annual catches 

ℓሺ2ሻ ൌ 0.5݊ logሺߪூ
ଶሻ ൅෍൫log൫ܫ௢௕௦ሺݐሻ൯ െ logሺܫ௘௦௧ሺݐሻሻ൯

ଶ

௧

  Likelihood component for 

annual index of 

abundance 

ℓሺ3ሻ ൌ െܧ஼෍෍݌௢௕௦,஼ሺܽ, ሻݐ
௔

log	ሺ݌௘௦௧,஼ሺܽ, ሻሻݐ
௧

 

 

Likelihood component for 

annual proportion‐at‐age 

in the catch 

ℓሺ4ሻ ൌ െܧூ෍෍݌௢௕௦,ூሺܽ, ሻݐ
௔

log	ሺ݌௘௦௧,ூሺܽ, ሻሻݐ
௧

  Likelihood component for 

annual proportion‐at‐age 

in the index 

ࣦథ ൌ െ
݊
2
logሺ2ߨሻ െ ݊ logሺߪሻ

െ෍ܵሺݐሻ ൅ 0.5 logሺ1 െ ߶ଶሻ
௧

െ
1
ଶߪ2

෍ሺlog	ሺܵሺݐሻ
௧வଵ

െ ߶ log൫ܵሺݐ െ 1ሻ െ log൫ܵ௘௦௧ሺݐሻ൯

൅ ߶ log൫ܵ௘௦௧ሺݐሻ൯൯ሻଶ

െ
1 െ ߶ଶ

ଶߪ2
ሺlog	ሺܵሺ1ሻ െ logሺܵ௘௦௧ሺ1ሻሻሻଶ 

Likelihood for estimating 

the lag‐1 autocorrelation 

in the estimation error in 

biomass (or recruitment) 
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Table 4. List of model runs explored in the model for each life history and exploitation level.   

 

 

  

Effective 
Model sample Survey Recruitment Harvest

run size (E) error ( I) M  f variability (R) policy?
1 200 0.29 0.3 0.3 0.77 no
2 50 0.63 0.9 0.9 0.77 no
3 200 0.29 0.3 0.3 1.25 no
4 50 0.63 0.9 0.9 1.25 no
5 200 0.29 0.3 0.3 0.77 yes
6 50 0.63 0.9 0.9 0.77 yes
7 200 0.29 0.3 0.3 1.25 yes
8 50 0.63 0.9 0.9 1.25 yes
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Table 5.  Comparison of the median estimates of the autocorrelation in biomass assessment error (߶ௌ) 
across model runs when an assessment-based harvest policy was or was not used, and the difference 
between these estimates ( = s(no policy) – s(policy)).    

 

  

Model Exploitation S S R R

Run history Life history (harvest policy) (no policy) S (harvest policy) (no policy) R

fast 0.69 0.87 0.17 0.63 0.65 0.02
light medium 0.82 0.90 0.09 0.53 0.49 -0.04

slow 0.85 0.93 0.07 0.47 0.46 -0.02
Low assessment fast 0.69 0.75 0.06 0.62 0.62 0.00

error and low moderate medium 0.82 0.85 0.04 0.50 0.48 -0.02
recruitment slow 0.87 0.90 0.03 0.37 0.35 -0.02
variability fast 0.67 0.61 -0.05 0.62 0.58 -0.04

heavy medium 0.80 0.76 -0.04 0.53 0.51 -0.01
slow 0.87 0.85 -0.01 0.36 0.37 0.01
fast 0.71 0.87 0.16 0.65 0.70 0.05

light medium 0.81 0.92 0.11 0.59 0.56 -0.03
High assessment slow 0.86 0.94 0.07 0.19 0.12 -0.07

error and low fast 0.67 0.75 0.08 0.61 0.65 0.04
recruitment moderate medium 0.79 0.85 0.06 0.53 0.49 -0.04
variability slow 0.86 0.91 0.05 0.23 0.13 -0.10

fast 0.66 0.63 -0.03 0.60 0.58 -0.02
heavy medium 0.78 0.79 0.00 0.50 0.51 0.02

slow 0.87 0.87 0.00 0.17 0.18 0.01
fast 0.67 0.86 0.20 0.61 0.63 0.01

light medium 0.82 0.90 0.09 0.50 0.44 -0.06
Low assessment slow 0.85 0.92 0.07 0.37 0.36 -0.01

error and high fast 0.67 0.74 0.07 0.59 0.59 0.00
recruitment moderate medium 0.81 0.85 0.04 0.45 0.43 -0.03
variability slow 0.87 0.91 0.04 0.30 0.27 -0.03

fast 0.66 0.62 -0.04 0.60 0.57 -0.02
heavy medium 0.80 0.76 -0.04 0.48 0.47 0.00

slow 0.87 0.86 -0.01 0.31 0.29 -0.02
fast 0.69 0.87 0.18 0.62 0.67 0.05

light medium 0.81 0.92 0.11 0.48 0.36 -0.12
High assessment slow 0.87 0.94 0.06 0.12 0.13 0.01

error and high fast 0.66 0.75 0.09 0.60 0.62 0.03
recruitment moderate medium 0.79 0.86 0.07 0.45 0.42 -0.02
variability slow 0.86 0.91 0.05 0.08 0.05 -0.02

fast 0.64 0.64 0.00 0.58 0.58 0.00
heavy medium 0.78 0.77 -0.02 0.45 0.46 0.01

slow 0.87 0.87 0.00 0.07 0.06 -0.01
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Figure 1.  A simulated “true” biomass trajectory and estimated values using the stochastic process 
assessment approach (Eqn 1) and the same random errors but different levels of lag-1 autocorrelation in 
the estimates (low: ߶ௌ= 0; high: ߶ௌ = 0.9).    
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Figure 2.  Estimated lag-1 autocorrelation in biomass (S; top panel) and recruitment (R; bottom panel) 
estimates across model scenarios 1-4 (see Table 4 for scenario details) for the different life histories and 
exploitation histories explored.   
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Figure 3.  Change in the estimated autocorrelation in biomass error (s) over time.  Estimates of s were 
calculated for the first and second halves of the time period, and change was calculated as the difference 
between these estimates.  Results are shown across life histories, exploitation histories, and whether or not 
a harvest policy was used (denoted H.P. and No H.P.).  Results for the No H.P. runs are aggregates of 
estimates from model runs 1-4 (Table 4), and for the H.P. runs are aggregates from model runs 5-8.     
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Figure 4.  Estimated lag-1 autocorrelation (s; Table 3) in biomass estimates across all model runs as a 
function of the mean fishing mortality ratio (Fratio = F / Ftarget) over the entire time period.  The gray line 
represents the best fit linear regression to the data: s=0.91 – 0.137 Fratio ; R

2 = 0.22; p < 0.0001.   
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Figure 5.  Estimated lag-1 autocorrelation in recruitment estimates across model scenarios compared to 
the estimated autocorrelation in biomass estimates across life histories.  The solid gray line it the 1:1 line, 
while the dotted gray line represents the best fitting line to the data.  Fast life history: R = 0.1 + 0.71 S; p 
< 0.0001; R2 = 0.47. Medium life history:  R = -0.11 + 0.73 S; p < 0.0001; R2 = 0.17. Slow life history: 
R = -0.18 + 0.54 S; p < 0.0001; R2 = 0.06.  
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Appendix A. Expanded results of Acceptable Biological Catch control rule simulations.  
Numbers for performance measures indicate the median and the number in parentheses is the 
coefficient of variation (CV).  



Life Assessment SPR SA Proj- ABC Exploitation Overfished Initial Final Catch
history uncertainty σR φR h target years tions? avg.? history S / SMSY probability ΔS5 ΔS15 F / FMSY POF (true) C / MSY C / MSY AAV

Fast Low 0.77 0.00 fixed 0.35 2 no no Light OFL 0.95 (0.54) 0.2 (0.77) -0.47 (1.96) -0.44 (1.67) 1.25 (0.33) 0.5 (0.42) 1.33 (0.39) 0.89 (0.44) 0.17 (0.27)
Fast Low 1.25 0.00 fixed 0.35 2 no no Light OFL 0.78 (0.94) 0.37 (0.45) -0.47 (17.03) -0.61 (9.28) 1.69 (0.26) 0.57 (0.27) 1.11 (0.62) 0.68 (0.89) 0.26 (0.28)
Fast Low 0.77 0.44 fixed 0.35 2 no no Light OFL 0.97 (0.45) 0.13 (0.97) -0.41 (1.17) -0.41 (1.07) 1.19 (0.33) 0.5 (0.47) 1.08 (0.32) 0.74 (0.33) 0.14 (0.27)
Fast Low 1.25 0.44 fixed 0.35 2 no no Light OFL 0.93 (0.71) 0.3 (0.62) -0.45 (2.28) -0.54 (1.72) 1.55 (0.32) 0.53 (0.34) 0.7 (0.42) 0.41 (0.58) 0.18 (0.27)
Fast Low 0.77 0.00 fixed 0.35 2 no no Moderate OFL 0.94 (0.51) 0.17 (0.86) 0 (6.24) -0.02 (5.09) 1.19 (0.3) 0.47 (0.42) 0.94 (0.41) 0.84 (0.44) 0.17 (0.26)
Fast Low 1.25 0.00 fixed 0.35 2 no no Moderate OFL 0.75 (0.91) 0.37 (0.47) -0.13 (4.7) -0.24 (4.39) 1.56 (0.26) 0.57 (0.24) 0.78 (0.71) 0.61 (0.81) 0.26 (0.29)
Fast Low 0.77 0.44 fixed 0.35 2 no no Moderate OFL 0.97 (0.42) 0.1 (1.11) 0.03 (9.93) 0.02 (7.13) 1.11 (0.29) 0.47 (0.47) 0.77 (0.3) 0.72 (0.34) 0.13 (0.25)
Fast Low 1.25 0.44 fixed 0.35 2 no no Moderate OFL 0.81 (0.69) 0.27 (0.7) -0.02 (7.11) -0.11 (7.03) 1.38 (0.31) 0.53 (0.33) 0.49 (0.43) 0.42 (0.59) 0.17 (0.28)
Fast Low 0.77 0.00 fixed 0.35 2 no no Heavy OFL 0.98 (0.52) 0.17 (0.74) 0.7 (1.35) 0.98 (1.33) 1.19 (0.29) 0.5 (0.4) 0.6 (0.42) 0.89 (0.49) 0.17 (0.26)
Fast Low 1.25 0.00 fixed 0.35 2 no no Heavy OFL 0.92 (0.91) 0.38 (0.46) 0.52 (1.99) 0.67 (2.08) 1.57 (0.28) 0.55 (0.26) 0.46 (0.73) 0.74 (0.95) 0.26 (0.27)
Fast Low 0.77 0.44 fixed 0.35 2 no no Heavy OFL 1.04 (0.42) 0.13 (0.85) 0.82 (1.04) 1.15 (1.04) 1.13 (0.29) 0.47 (0.44) 0.49 (0.33) 0.74 (0.34) 0.14 (0.24)
Fast Low 1.25 0.44 fixed 0.35 2 no no Heavy OFL 1.08 (0.64) 0.27 (0.62) 0.75 (1.48) 1.13 (1.49) 1.33 (0.31) 0.53 (0.35) 0.27 (0.48) 0.47 (0.55) 0.18 (0.25)
Fast Low 0.77 0.00 fixed 0.35 2 no no Light P* var (0.38) 1.14 (0.45) 0.1 (1.01) -0.37 (2.82) -0.29 (3.44) 0.92 (0.29) 0.3 (0.55) 1.23 (0.4) 0.9 (0.43) 0.16 (0.26)
Fast Low 1.25 0.00 fixed 0.35 2 no no Light P* var (0.38) 1.05 (0.78) 0.27 (0.53) -0.39 (532.28) -0.36 (21.55) 1.13 (0.26) 0.37 (0.37) 1.02 (0.63) 0.72 (0.84) 0.26 (0.26)
Fast Low 0.77 0.44 fixed 0.35 2 no no Light P* var (0.38) 1.18 (0.37) 0 (1.29) -0.33 (1.55) -0.27 (1.84) 0.9 (0.29) 0.27 (0.6) 1.01 (0.33) 0.75 (0.32) 0.14 (0.28)
Fast Low 1.25 0.44 fixed 0.35 2 no no Light P* var (0.38) 1.14 (0.56) 0.17 (0.77) -0.37 (3.4) -0.33 (4.22) 1.01 (0.27) 0.33 (0.45) 0.65 (0.43) 0.48 (0.51) 0.18 (0.26)
Fast Low 0.77 0.00 fixed 0.35 2 no no Moderate P* var (0.38) 1.13 (0.42) 0.07 (1.13) 0.14 (2.62) 0.16 (2.31) 0.89 (0.24) 0.27 (0.59) 0.83 (0.46) 0.86 (0.41) 0.16 (0.25)
Fast Low 1.25 0.00 fixed 0.35 2 no no Moderate P* var (0.38) 0.99 (0.73) 0.23 (0.56) 0.06 (3.15) 0.09 (2.85) 1.06 (0.24) 0.33 (0.34) 0.7 (0.77) 0.66 (0.74) 0.26 (0.28)
Fast Low 0.77 0.44 fixed 0.35 2 no no Moderate P* var (0.38) 1.16 (0.35) 0 (1.57) 0.17 (2.49) 0.2 (2.1) 0.86 (0.24) 0.27 (0.63) 0.68 (0.34) 0.72 (0.32) 0.13 (0.26)
Fast Low 1.25 0.44 fixed 0.35 2 no no Moderate P* var (0.38) 1.07 (0.52) 0.13 (0.89) 0.16 (2.89) 0.23 (2.4) 0.95 (0.25) 0.3 (0.45) 0.44 (0.47) 0.45 (0.52) 0.18 (0.26)
Fast Low 0.77 0.00 fixed 0.35 2 no no Heavy P* var (0.38) 1.18 (0.44) 0.1 (0.87) 1.35 (0.91) 1.39 (1.1) 0.86 (0.25) 0.27 (0.56) 0.45 (0.52) 0.92 (0.48) 0.17 (0.26)
Fast Low 1.25 0.00 fixed 0.35 2 no no Heavy P* var (0.38) 1.14 (0.8) 0.25 (0.56) 1.29 (1.51) 1.33 (1.73) 1.04 (0.26) 0.33 (0.36) 0.35 (0.88) 0.77 (1.07) 0.26 (0.26)
Fast Low 0.77 0.44 fixed 0.35 2 no no Heavy P* var (0.38) 1.22 (0.35) 0.03 (1.02) 1.49 (0.66) 1.53 (0.84) 0.85 (0.25) 0.27 (0.65) 0.36 (0.42) 0.76 (0.32) 0.14 (0.24)
Fast Low 1.25 0.44 fixed 0.35 2 no no Heavy P* var (0.38) 1.28 (0.52) 0.13 (0.76) 1.5 (0.99) 1.84 (1.17) 0.89 (0.25) 0.3 (0.48) 0.2 (0.61) 0.49 (0.51) 0.18 (0.24)
Fast Low 0.77 0.00 fixed 0.35 2 no no Light P* varied (0.7) 1.25 (0.43) 0.03 (1.22) -0.31 (3.94) -0.2 (6.36) 0.78 (0.29) 0.23 (0.67) 1.16 (0.41) 0.9 (0.43) 0.16 (0.26)
Fast Low 1.25 0.00 fixed 0.35 2 no no Light P* varied (0.7) 1.15 (0.74) 0.2 (0.61) -0.32 (24.57) -0.27 (9.17) 0.96 (0.28) 0.3 (0.44) 0.95 (0.64) 0.72 (0.83) 0.25 (0.25)
Fast Low 0.77 0.44 fixed 0.35 2 no no Light P* varied (0.7) 1.28 (0.34) 0 (1.59) -0.28 (1.97) -0.2 (2.73) 0.79 (0.28) 0.2 (0.73) 0.95 (0.34) 0.76 (0.31) 0.13 (0.28)
Fast Low 1.25 0.44 fixed 0.35 2 no no Light P* varied (0.7) 1.24 (0.52) 0.1 (0.94) -0.31 (4.98) -0.22 (9.91) 0.85 (0.27) 0.27 (0.53) 0.61 (0.44) 0.48 (0.5) 0.18 (0.25)
Fast Low 0.77 0.00 fixed 0.35 2 no no Moderate P* varied (0.7) 1.24 (0.39) 0 (1.41) 0.26 (1.96) 0.27 (1.87) 0.76 (0.23) 0.2 (0.71) 0.75 (0.49) 0.85 (0.41) 0.16 (0.26)
Fast Low 1.25 0.00 fixed 0.35 2 no no Moderate P* varied (0.7) 1.11 (0.69) 0.2 (0.65) 0.16 (2.65) 0.21 (2.54) 0.9 (0.26) 0.27 (0.42) 0.64 (0.81) 0.67 (0.73) 0.26 (0.27)
Fast Low 0.77 0.44 fixed 0.35 2 no no Moderate P* varied (0.7) 1.25 (0.32) 0 (1.93) 0.26 (1.73) 0.33 (1.58) 0.75 (0.22) 0.17 (0.79) 0.63 (0.36) 0.71 (0.32) 0.13 (0.26)
Fast Low 1.25 0.44 fixed 0.35 2 no no Moderate P* varied (0.7) 1.17 (0.48) 0.07 (1.06) 0.26 (2.17) 0.38 (1.91) 0.8 (0.24) 0.23 (0.56) 0.4 (0.5) 0.45 (0.5) 0.17 (0.26)
Fast Low 0.77 0.00 fixed 0.35 2 no no Heavy P* varied (0.7) 1.28 (0.41) 0.07 (0.97) 1.7 (0.8) 1.61 (1.03) 0.74 (0.25) 0.17 (0.71) 0.36 (0.6) 0.92 (0.47) 0.17 (0.25)
Fast Low 1.25 0.00 fixed 0.35 2 no no Heavy P* varied (0.7) 1.26 (0.76) 0.2 (0.61) 1.61 (1.33) 1.68 (1.65) 0.87 (0.26) 0.23 (0.48) 0.28 (0.99) 0.78 (1.09) 0.26 (0.25)
Fast Low 0.77 0.44 fixed 0.35 2 no no Heavy P* varied (0.7) 1.32 (0.32) 0.03 (1.05) 1.82 (0.57) 1.75 (0.77) 0.73 (0.24) 0.17 (0.83) 0.28 (0.49) 0.75 (0.31) 0.14 (0.24)
Fast Low 1.25 0.44 fixed 0.35 2 no no Heavy P* varied (0.7) 1.4 (0.49) 0.1 (0.83) 1.9 (0.86) 2.08 (1.1) 0.75 (0.24) 0.2 (0.6) 0.16 (0.72) 0.48 (0.5) 0.18 (0.23)
Fast Low 0.77 0.00 fixed 0.35 2 no no Light P* varied (1.0) 1.31 (0.41) 0 (1.42) -0.26 (5.43) -0.16 (12.56) 0.72 (0.29) 0.17 (0.79) 1.11 (0.41) 0.88 (0.43) 0.16 (0.27)
Fast Low 1.25 0.00 fixed 0.35 2 no no Light P* varied (1.0) 1.2 (0.71) 0.17 (0.67) -0.26 (14.83) -0.2 (6.71) 0.87 (0.29) 0.27 (0.51) 0.91 (0.65) 0.72 (0.82) 0.25 (0.25)
Fast Low 0.77 0.44 fixed 0.35 2 no no Light P* varied (1.0) 1.35 (0.33) 0 (1.91) -0.24 (2.46) -0.16 (3.93) 0.73 (0.28) 0.17 (0.84) 0.91 (0.34) 0.75 (0.31) 0.13 (0.28)
Fast Low 1.25 0.44 fixed 0.35 2 no no Light P* varied (1.0) 1.3 (0.5) 0.07 (1.05) -0.27 (7.4) -0.18 (41.48) 0.75 (0.27) 0.2 (0.62) 0.58 (0.45) 0.47 (0.5) 0.17 (0.25)
Fast Low 0.77 0.00 fixed 0.35 2 no no Moderate P* varied (1.0) 1.29 (0.37) 0 (1.7) 0.33 (1.7) 0.33 (1.66) 0.69 (0.22) 0.13 (0.84) 0.7 (0.51) 0.84 (0.4) 0.16 (0.25)
Fast Low 1.25 0.00 fixed 0.35 2 no no Moderate P* varied (1.0) 1.18 (0.66) 0.17 (0.74) 0.23 (2.39) 0.29 (2.36) 0.79 (0.27) 0.23 (0.51) 0.58 (0.84) 0.67 (0.71) 0.25 (0.26)
Fast Low 0.77 0.44 fixed 0.35 2 no no Moderate P* varied (1.0) 1.3 (0.3) 0 (2.34) 0.33 (1.45) 0.4 (1.35) 0.69 (0.21) 0.13 (0.93) 0.59 (0.38) 0.71 (0.31) 0.13 (0.26)
Fast Low 1.25 0.44 fixed 0.35 2 no no Moderate P* varied (1.0) 1.25 (0.46) 0.03 (1.19) 0.35 (1.87) 0.44 (1.7) 0.72 (0.23) 0.17 (0.66) 0.37 (0.53) 0.45 (0.49) 0.17 (0.26)
Fast Low 0.77 0.00 fixed 0.35 2 no no Heavy P* varied (1.0) 1.34 (0.4) 0.03 (1.03) 1.93 (0.74) 1.73 (0.98) 0.67 (0.24) 0.13 (0.85) 0.31 (0.66) 0.91 (0.46) 0.17 (0.25)
Fast Low 1.25 0.00 fixed 0.35 2 no no Heavy P* varied (1.0) 1.34 (0.73) 0.17 (0.67) 1.84 (1.24) 1.89 (1.6) 0.75 (0.27) 0.2 (0.56) 0.23 (1.08) 0.78 (1.09) 0.25 (0.25)
Fast Low 0.77 0.44 fixed 0.35 2 no no Heavy P* varied (1.0) 1.38 (0.31) 0.03 (1.05) 2.01 (0.53) 1.88 (0.73) 0.67 (0.23) 0.1 (0.99) 0.23 (0.54) 0.74 (0.31) 0.14 (0.24)
Fast Low 1.25 0.44 fixed 0.35 2 no no Heavy P* varied (1.0) 1.47 (0.47) 0.07 (0.88) 2.09 (0.8) 2.31 (1.05) 0.68 (0.24) 0.15 (0.72) 0.13 (0.81) 0.48 (0.48) 0.18 (0.23)
Fast Low 0.77 0.00 fixed 0.35 2 no no Light P* fixed (0.38) 1.09 (0.49) 0.1 (0.98) -0.37 (2.7) -0.35 (2.49) 1.01 (0.34) 0.37 (0.56) 1.23 (0.4) 0.9 (0.41) 0.15 (0.26)
Fast Low 1.25 0.00 fixed 0.35 2 no no Light P* fixed (0.38) 0.91 (0.87) 0.33 (0.54) -0.39 (81.82) -0.51 (36.45) 1.42 (0.3) 0.5 (0.35) 1.03 (0.62) 0.69 (0.84) 0.24 (0.27)
Fast Low 0.77 0.44 fixed 0.35 2 no no Light P* fixed (0.38) 1.1 (0.4) 0.03 (1.29) -0.33 (1.52) -0.33 (1.49) 0.96 (0.33) 0.33 (0.62) 1.01 (0.33) 0.75 (0.3) 0.13 (0.26)
Fast Low 1.25 0.44 fixed 0.35 2 no no Light P* fixed (0.38) 1.06 (0.63) 0.2 (0.79) -0.37 (3.2) -0.42 (2.65) 1.21 (0.34) 0.43 (0.44) 0.65 (0.43) 0.44 (0.51) 0.17 (0.27)
Fast Low 0.77 0.00 fixed 0.35 2 no no Moderate P* fixed (0.38) 1.08 (0.45) 0.07 (1.1) 0.1 (3.26) 0.13 (2.83) 0.96 (0.29) 0.33 (0.58) 0.86 (0.43) 0.85 (0.4) 0.15 (0.25)
Fast Low 1.25 0.00 fixed 0.35 2 no no Moderate P* fixed (0.38) 0.84 (0.84) 0.3 (0.56) -0.02 (3.75) -0.07 (3.43) 1.32 (0.3) 0.47 (0.33) 0.73 (0.72) 0.62 (0.76) 0.24 (0.29)
Fast Low 0.77 0.44 fixed 0.35 2 no no Moderate P* fixed (0.38) 1.1 (0.37) 0 (1.56) 0.13 (3.1) 0.17 (2.6) 0.91 (0.28) 0.3 (0.64) 0.71 (0.31) 0.72 (0.31) 0.12 (0.25)
Fast Low 1.25 0.44 fixed 0.35 2 no no Moderate P* fixed (0.38) 0.97 (0.61) 0.2 (0.87) 0.11 (3.75) 0.09 (3.26) 1.09 (0.34) 0.4 (0.45) 0.46 (0.43) 0.44 (0.54) 0.16 (0.27)
Fast Low 0.77 0.00 fixed 0.35 2 no no Heavy P* fixed (0.38) 1.13 (0.47) 0.13 (0.85) 0.9 (1.15) 1.28 (1.16) 0.97 (0.29) 0.37 (0.52) 0.57 (0.42) 0.91 (0.46) 0.16 (0.25)
Fast Low 1.25 0.00 fixed 0.35 2 no no Heavy P* fixed (0.38) 1.08 (0.86) 0.33 (0.55) 0.69 (1.82) 0.98 (1.89) 1.35 (0.31) 0.47 (0.34) 0.44 (0.74) 0.76 (0.94) 0.24 (0.27)
Fast Low 0.77 0.44 fixed 0.35 2 no no Heavy P* fixed (0.38) 1.19 (0.37) 0.07 (1.04) 1 (0.85) 1.51 (0.87) 0.93 (0.28) 0.33 (0.6) 0.45 (0.33) 0.75 (0.31) 0.13 (0.23)
Fast Low 1.25 0.44 fixed 0.35 2 no no Heavy P* fixed (0.38) 1.22 (0.58) 0.2 (0.77) 0.97 (1.29) 1.64 (1.28) 1.04 (0.34) 0.4 (0.45) 0.25 (0.49) 0.48 (0.51) 0.17 (0.24)
Fast Low 0.77 0.00 fixed 0.35 2 no no Light P* fixed (0.7) 1.19 (0.46) 0.07 (1.18) -0.32 (3.62) -0.28 (3.66) 0.86 (0.34) 0.27 (0.68) 1.16 (0.4) 0.9 (0.4) 0.15 (0.26)
Fast Low 1.25 0.00 fixed 0.35 2 no no Light P* fixed (0.7) 1 (0.84) 0.27 (0.6) -0.34 (50.14) -0.44 (37.32) 1.25 (0.33) 0.43 (0.41) 0.97 (0.62) 0.7 (0.81) 0.23 (0.27)
Fast Low 0.77 0.44 fixed 0.35 2 no no Light P* fixed (0.7) 1.2 (0.37) 0 (1.6) -0.28 (1.92) -0.26 (2.01) 0.84 (0.33) 0.27 (0.75) 0.95 (0.33) 0.75 (0.29) 0.12 (0.26)
Fast Low 1.25 0.44 fixed 0.35 2 no no Light P* fixed (0.7) 1.15 (0.58) 0.15 (0.92) -0.31 (4.41) -0.32 (4.09) 1 (0.35) 0.37 (0.53) 0.61 (0.43) 0.46 (0.48) 0.16 (0.27)
Fast Low 0.77 0.00 fixed 0.35 2 no no Moderate P* fixed (0.7) 1.17 (0.42) 0.03 (1.37) 0.16 (2.47) 0.22 (2.15) 0.84 (0.29) 0.23 (0.72) 0.81 (0.43) 0.84 (0.38) 0.15 (0.25)
Fast Low 1.25 0.00 fixed 0.35 2 no no Moderate P* fixed (0.7) 0.95 (0.79) 0.27 (0.64) 0.06 (3.3) 0.04 (3) 1.16 (0.34) 0.4 (0.42) 0.7 (0.72) 0.64 (0.73) 0.23 (0.28)
Fast Low 0.77 0.44 fixed 0.35 2 no no Moderate P* fixed (0.7) 1.18 (0.34) 0 (1.97) 0.19 (2.12) 0.27 (1.84) 0.81 (0.26) 0.2 (0.81) 0.67 (0.31) 0.72 (0.29) 0.11 (0.24)
Fast Low 1.25 0.44 fixed 0.35 2 no no Moderate P* fixed (0.7) 1.08 (0.56) 0.1 (1.04) 0.18 (2.85) 0.26 (2.4) 0.92 (0.34) 0.3 (0.56) 0.43 (0.43) 0.44 (0.5) 0.15 (0.26)
Fast Low 0.77 0.00 fixed 0.35 2 no no Heavy P* fixed (0.7) 1.21 (0.44) 0.1 (0.94) 1.05 (1.04) 1.5 (1.07) 0.85 (0.28) 0.23 (0.65) 0.54 (0.43) 0.9 (0.45) 0.15 (0.25)
Fast Low 1.25 0.00 fixed 0.35 2 no no Heavy P* fixed (0.7) 1.18 (0.82) 0.3 (0.6) 0.82 (1.71) 1.24 (1.78) 1.17 (0.33) 0.4 (0.42) 0.42 (0.74) 0.78 (1) 0.23 (0.27)
Fast Low 0.77 0.44 fixed 0.35 2 no no Heavy P* fixed (0.7) 1.28 (0.34) 0.07 (1.08) 1.16 (0.76) 1.74 (0.79) 0.83 (0.27) 0.22 (0.74) 0.43 (0.34) 0.74 (0.29) 0.12 (0.22)
Fast Low 1.25 0.44 fixed 0.35 2 no no Heavy P* fixed (0.7) 1.34 (0.55) 0.13 (0.85) 1.1 (1.19) 1.98 (1.17) 0.91 (0.35) 0.3 (0.55) 0.24 (0.49) 0.48 (0.48) 0.16 (0.23)
Fast Low 0.77 0.00 fixed 0.35 2 no no Light P* fixed (1.0) 1.25 (0.44) 0 (1.38) -0.27 (4.79) -0.23 (5.31) 0.78 (0.33) 0.23 (0.8) 1.11 (0.4) 0.89 (0.39) 0.14 (0.26)
Fast Low 1.25 0.00 fixed 0.35 2 no no Light P* fixed (1.0) 1.08 (0.8) 0.23 (0.66) -0.3 (23.17) -0.35 (14.51) 1.1 (0.35) 0.37 (0.47) 0.92 (0.62) 0.71 (0.79) 0.23 (0.27)
Fast Low 0.77 0.44 fixed 0.35 2 no no Light P* fixed (1.0) 1.28 (0.35) 0 (1.91) -0.24 (2.36) -0.21 (2.68) 0.77 (0.33) 0.2 (0.88) 0.91 (0.34) 0.75 (0.28) 0.12 (0.25)
Fast Low 1.25 0.44 fixed 0.35 2 no no Light P* fixed (1.0) 1.21 (0.56) 0.1 (1.03) -0.28 (6.08) -0.27 (6.5) 0.88 (0.36) 0.3 (0.61) 0.58 (0.43) 0.46 (0.46) 0.15 (0.26)
Fast Low 0.77 0.00 fixed 0.35 2 no no Moderate P* fixed (1.0) 1.23 (0.4) 0 (1.64) 0.21 (2.1) 0.31 (1.86) 0.76 (0.27) 0.17 (0.85) 0.78 (0.43) 0.83 (0.37) 0.14 (0.25)
Fast Low 1.25 0.00 fixed 0.35 2 no no Moderate P* fixed (1.0) 1.03 (0.76) 0.23 (0.7) 0.11 (3.03) 0.15 (2.74) 1.03 (0.35) 0.33 (0.48) 0.67 (0.72) 0.64 (0.71) 0.23 (0.28)
Fast Low 0.77 0.44 fixed 0.35 2 no no Moderate P* fixed (1.0) 1.25 (0.32) 0 (2.4) 0.23 (1.72) 0.34 (1.53) 0.74 (0.25) 0.13 (0.94) 0.64 (0.31) 0.71 (0.28) 0.11 (0.24)
Fast Low 1.25 0.44 fixed 0.35 2 no no Moderate P* fixed (1.0) 1.15 (0.53) 0.07 (1.16) 0.24 (2.43) 0.35 (2.03) 0.82 (0.34) 0.23 (0.65) 0.41 (0.43) 0.45 (0.47) 0.15 (0.26)
Fast Low 0.77 0.00 fixed 0.35 2 no no Heavy P* fixed (1.0) 1.28 (0.43) 0.07 (0.98) 1.14 (0.97) 1.66 (1) 0.78 (0.27) 0.2 (0.75) 0.52 (0.43) 0.88 (0.44) 0.15 (0.25)
Fast Low 1.25 0.00 fixed 0.35 2 no no Heavy P* fixed (1.0) 1.27 (0.79) 0.23 (0.64) 0.95 (1.65) 1.47 (1.71) 1.06 (0.35) 0.33 (0.48) 0.4 (0.74) 0.77 (1.03) 0.23 (0.27)
Fast Low 0.77 0.44 fixed 0.35 2 no no Heavy P* fixed (1.0) 1.35 (0.33) 0.03 (1.07) 1.25 (0.71) 1.87 (0.74) 0.76 (0.26) 0.13 (0.87) 0.41 (0.34) 0.73 (0.28) 0.12 (0.22)
Fast Low 1.25 0.44 fixed 0.35 2 no no Heavy P* fixed (1.0) 1.42 (0.52) 0.1 (0.9) 1.19 (1.12) 2.22 (1.11) 0.82 (0.34) 0.23 (0.64) 0.23 (0.5) 0.48 (0.46) 0.15 (0.23)
Fast Low 0.77 0.00 fixed 0.35 2 no no Light 75% of F_lim 1.2 (0.45) 0.03 (1.25) -0.3 (3.93) -0.26 (4.15) 0.83 (0.33) 0.27 (0.72) 1.15 (0.4) 0.9 (0.4) 0.15 (0.26)
Fast Low 1.25 0.00 fixed 0.35 2 no no Light 75% of F_lim 1.04 (0.82) 0.27 (0.62) -0.33 (36.6) -0.42 (23.95) 1.18 (0.33) 0.4 (0.43) 0.96 (0.62) 0.7 (0.81) 0.23 (0.27)
Fast Low 0.77 0.44 fixed 0.35 2 no no Light 75% of F_lim 1.24 (0.36) 0 (1.7) -0.27 (2.04) -0.24 (2.22) 0.81 (0.32) 0.23 (0.78) 0.94 (0.34) 0.75 (0.29) 0.12 (0.26)
Fast Low 1.25 0.44 fixed 0.35 2 no no Light 75% of F_lim 1.18 (0.57) 0.13 (0.96) -0.3 (4.81) -0.3 (4.74) 0.95 (0.35) 0.33 (0.55) 0.6 (0.43) 0.46 (0.47) 0.16 (0.26)
Fast Low 0.77 0.00 fixed 0.35 2 no no Moderate 75% of F_lim 1.19 (0.41) 0 (1.46) 0.18 (2.31) 0.24 (2.04) 0.8 (0.28) 0.23 (0.75) 0.8 (0.43) 0.84 (0.38) 0.15 (0.25)
Fast Low 1.25 0.00 fixed 0.35 2 no no Moderate 75% of F_lim 0.99 (0.78) 0.27 (0.66) 0.08 (3.17) 0.08 (2.9) 1.12 (0.34) 0.37 (0.43) 0.69 (0.72) 0.64 (0.72) 0.23 (0.29)
Fast Low 0.77 0.44 fixed 0.35 2 no no Moderate 75% of F_lim 1.22 (0.33) 0 (2.11) 0.21 (1.94) 0.29 (1.72) 0.78 (0.26) 0.17 (0.85) 0.66 (0.31) 0.72 (0.29) 0.11 (0.24)
Fast Low 1.25 0.44 fixed 0.35 2 no no Moderate 75% of F_lim 1.1 (0.55) 0.1 (1.06) 0.21 (2.66) 0.29 (2.24) 0.88 (0.33) 0.27 (0.59) 0.42 (0.43) 0.44 (0.49) 0.15 (0.26)
Fast Low 0.77 0.00 fixed 0.35 2 no no Heavy 75% of F_lim 1.23 (0.44) 0.07 (0.96) 1.1 (1) 1.56 (1.04) 0.82 (0.28) 0.23 (0.68) 0.53 (0.43) 0.89 (0.44) 0.15 (0.25)
Fast Low 1.25 0.00 fixed 0.35 2 no no Heavy 75% of F_lim 1.21 (0.81) 0.27 (0.61) 0.92 (1.67) 1.36 (1.75) 1.11 (0.34) 0.37 (0.43) 0.41 (0.74) 0.78 (1.03) 0.23 (0.27)
Fast Low 0.77 0.44 fixed 0.35 2 no no Heavy 75% of F_lim 1.31 (0.34) 0.03 (1.06) 1.22 (0.73) 1.79 (0.77) 0.8 (0.26) 0.2 (0.79) 0.42 (0.34) 0.74 (0.29) 0.12 (0.22)
Fast Low 1.25 0.44 fixed 0.35 2 no no Heavy 75% of F_lim 1.36 (0.53) 0.13 (0.87) 1.15 (1.14) 2.06 (1.15) 0.87 (0.33) 0.27 (0.57) 0.24 (0.5) 0.48 (0.48) 0.16 (0.23)
Fast Low 0.77 0.00 fixed 0.35 2 no no Light 75% of F_lim 0.61 (0.67) 0.42 (0.43) -0.66 (1.13) -0.67 (0.85) 2 (0.25) 0.77 (0.22) 1.55 (0.37) 0.82 (0.52) 0.21 (0.26)
Fast Low 1.25 0.00 fixed 0.35 2 no no Light 75% of F_lim 0.53 (1.06) 0.53 (0.28) -0.7 (5.79) -0.78 (3.22) 2.21 (0.18) 0.73 (0.16) 1.29 (0.6) 0.59 (0.98) 0.31 (0.28)
Fast Low 0.77 0.44 fixed 0.35 2 no no Light 75% of F_lim 0.66 (0.58) 0.4 (0.49) -0.64 (0.71) -0.68 (0.58) 1.96 (0.26) 0.8 (0.23) 1.24 (0.29) 0.68 (0.41) 0.17 (0.27)
Fast Low 1.25 0.44 fixed 0.35 2 no no Light 75% of F_lim 0.61 (0.85) 0.5 (0.35) -0.67 (1.28) -0.82 (0.82) 2.22 (0.21) 0.77 (0.18) 0.82 (0.4) 0.34 (0.69) 0.21 (0.26)
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Fast Low 0.77 0.00 fixed 0.35 2 no no Moderate 75% of F_lim 0.62 (0.64) 0.4 (0.46) -0.32 (3.94) -0.4 (3.68) 1.91 (0.24) 0.77 (0.18) 1.09 (0.39) 0.75 (0.53) 0.2 (0.26)
Fast Low 1.25 0.00 fixed 0.35 2 no no Moderate 75% of F_lim 0.47 (1.07) 0.5 (0.31) -0.43 (14.52) -0.58 (13.78) 2.16 (0.18) 0.73 (0.14) 0.88 (0.72) 0.49 (0.92) 0.3 (0.29)
Fast Low 0.77 0.44 fixed 0.35 2 no no Moderate 75% of F_lim 0.61 (0.57) 0.33 (0.56) -0.27 (2.01) -0.37 (1.86) 1.83 (0.26) 0.8 (0.21) 0.91 (0.28) 0.64 (0.43) 0.16 (0.25)
Fast Low 1.25 0.44 fixed 0.35 2 no no Moderate 75% of F_lim 0.48 (0.89) 0.5 (0.39) -0.34 (4.91) -0.61 (2.86) 2.16 (0.22) 0.77 (0.16) 0.57 (0.42) 0.33 (0.72) 0.21 (0.27)
Fast Low 0.77 0.00 fixed 0.35 2 no no Heavy 75% of F_lim 0.66 (0.65) 0.43 (0.43) 0.21 (2.42) 0.21 (2.36) 1.93 (0.23) 0.77 (0.18) 0.69 (0.41) 0.81 (0.53) 0.21 (0.26)
Fast Low 1.25 0.00 fixed 0.35 2 no no Heavy 75% of F_lim 0.6 (1.03) 0.5 (0.31) 0.08 (2.64) -0.12 (2.72) 2.12 (0.19) 0.73 (0.16) 0.53 (0.75) 0.63 (1.01) 0.31 (0.27)
Fast Low 0.77 0.44 fixed 0.35 2 no no Heavy 75% of F_lim 0.71 (0.52) 0.37 (0.5) 0.28 (2.21) 0.3 (2.07) 1.87 (0.24) 0.8 (0.18) 0.56 (0.31) 0.69 (0.38) 0.17 (0.24)
Fast Low 1.25 0.44 fixed 0.35 2 no no Heavy 75% of F_lim 0.66 (0.79) 0.47 (0.38) 0.28 (2.35) 0.16 (2.56) 2.03 (0.22) 0.73 (0.16) 0.31 (0.48) 0.39 (0.65) 0.21 (0.25)
Fast High 0.77 0 fixed 0.35 2 no no Light OFL 1.04 (0.63) 0.23 (0.77) -0.43 (2.32) -0.46 (2.33) 1.34 (0.46) 0.43 (0.55) 1.28 (0.47) 0.78 (0.49) 0.24 (0.32)
Fast High 1.25 0 fixed 0.35 2 no no Light OFL 0.78 (0.94) 0.37 (0.53) -0.46 (20.48) -0.58 (17.03) 1.58 (0.38) 0.53 (0.42) 1.08 (0.65) 0.62 (0.88) 0.31 (0.35)
Fast High 0.77 0.44 fixed 0.35 2 no no Light OFL 1.03 (0.59) 0.2 (0.85) -0.42 (1.47) -0.42 (1.54) 1.27 (0.47) 0.43 (0.57) 1.05 (0.41) 0.64 (0.42) 0.22 (0.3)
Fast High 1.25 0.44 fixed 0.35 2 no no Light OFL 0.96 (0.75) 0.33 (0.67) -0.46 (2.51) -0.56 (2.29) 1.48 (0.42) 0.5 (0.48) 0.67 (0.5) 0.38 (0.61) 0.24 (0.32)
Fast High 0.77 0 fixed 0.35 2 no no Moderate OFL 1.02 (0.62) 0.23 (0.81) -0.04 (9.7) -0.05 (4.89) 1.32 (0.45) 0.47 (0.54) 0.92 (0.48) 0.75 (0.55) 0.24 (0.3)
Fast High 1.25 0 fixed 0.35 2 no no Moderate OFL 0.76 (0.92) 0.37 (0.55) -0.17 (4.86) -0.24 (4.09) 1.6 (0.38) 0.53 (0.41) 0.76 (0.8) 0.57 (0.83) 0.31 (0.34)
Fast High 0.77 0.44 fixed 0.35 2 no no Moderate OFL 0.99 (0.58) 0.2 (0.89) 0 (50.5) -0.04 (8.01) 1.32 (0.47) 0.43 (0.57) 0.78 (0.39) 0.62 (0.46) 0.21 (0.28)
Fast High 1.25 0.44 fixed 0.35 2 no no Moderate OFL 0.84 (0.75) 0.3 (0.7) -0.08 (9.13) -0.14 (6.48) 1.48 (0.42) 0.5 (0.47) 0.48 (0.51) 0.38 (0.65) 0.23 (0.31)
Fast High 0.77 0 fixed 0.35 2 no no Heavy OFL 0.99 (0.62) 0.27 (0.68) 0.65 (1.62) 0.85 (1.58) 1.42 (0.44) 0.47 (0.53) 0.6 (0.5) 0.79 (0.55) 0.26 (0.29)
Fast High 1.25 0 fixed 0.35 2 no no Heavy OFL 0.93 (0.92) 0.4 (0.51) 0.43 (2.01) 0.69 (2.18) 1.6 (0.37) 0.53 (0.41) 0.44 (0.79) 0.66 (1) 0.31 (0.34)
Fast High 0.77 0.44 fixed 0.35 2 no no Heavy OFL 1.05 (0.57) 0.23 (0.75) 0.63 (1.42) 1.01 (1.3) 1.39 (0.44) 0.47 (0.54) 0.48 (0.41) 0.64 (0.43) 0.23 (0.26)
Fast High 1.25 0.44 fixed 0.35 2 no no Heavy OFL 1.02 (0.71) 0.3 (0.63) 0.59 (1.66) 1.08 (1.64) 1.48 (0.42) 0.5 (0.47) 0.26 (0.54) 0.41 (0.6) 0.23 (0.27)
Fast High 0.77 0 fixed 0.35 2 no no Light P* var (0.38) 1.22 (0.57) 0.17 (0.9) -0.36 (3.17) -0.29 (5.14) 1.04 (0.47) 0.3 (0.64) 1.2 (0.5) 0.78 (0.51) 0.25 (0.32)
Fast High 1.25 0 fixed 0.35 2 no no Light P* var (0.38) 1.03 (0.81) 0.27 (0.6) 0.38 (104.53) -0.39 (14.97) 1.15 (0.41) 0.33 (0.53) 1 (0.68) 0.65 (0.86) 0.31 (0.33)
Fast High 0.77 0.44 fixed 0.35 2 no no Light P* var (0.38) 1.24 (0.51) 0.13 (0.94) -0.33 (1.86) -0.26 (2.8) 1.03 (0.47) 0.3 (0.65) 0.97 (0.44) 0.64 (0.44) 0.23 (0.31)
Fast High 1.25 0.44 fixed 0.35 2 no no Light P* var (0.38) 1.15 (0.62) 0.2 (0.81) -0.39 (3.55) -0.32 (5.68) 1.05 (0.43) 0.33 (0.59) 0.62 (0.53) 0.41 (0.58) 0.24 (0.3)
Fast High 0.77 0 fixed 0.35 2 no no Moderate P* var (0.38) 1.2 (0.54) 0.17 (0.94) 0.12 (3.64) 0.15 (2.52) 1.01 (0.46) 0.3 (0.64) 0.82 (0.55) 0.76 (0.56) 0.24 (0.3)
Fast High 1.25 0 fixed 0.35 2 no no Moderate P* var (0.38) 1.04 (0.76) 0.27 (0.62) 0.05 (3.32) 0.14 (2.86) 1.1 (0.39) 0.33 (0.53) 0.68 (0.87) 0.62 (0.8) 0.31 (0.33)
Fast High 0.77 0.44 fixed 0.35 2 no no Moderate P* var (0.38) 1.22 (0.5) 0.1 (1.06) 0.14 (4.21) 0.2 (2.58) 1.01 (0.46) 0.33 (0.66) 0.71 (0.46) 0.65 (0.46) 0.21 (0.28)
Fast High 1.25 0.44 fixed 0.35 2 no no Moderate P* var (0.38) 1.17 (0.6) 0.17 (0.83) 0.14 (3.44) 0.19 (2.52) 1.04 (0.41) 0.33 (0.6) 0.43 (0.58) 0.41 (0.61) 0.23 (0.3)
Fast High 0.77 0 fixed 0.35 2 no no Heavy P* var (0.38) 1.22 (0.54) 0.17 (0.78) 1.21 (1.18) 1.36 (1.31) 1.06 (0.46) 0.33 (0.63) 0.48 (0.61) 0.79 (0.56) 0.26 (0.3)
Fast High 1.25 0 fixed 0.35 2 no no Heavy P* var (0.38) 1.15 (0.81) 0.27 (0.58) 1.04 (1.57) 1.43 (1.88) 1.08 (0.41) 0.33 (0.53) 0.34 (0.93) 0.71 (1.02) 0.32 (0.32)
Fast High 0.77 0.44 fixed 0.35 2 no no Heavy P* var (0.38) 1.24 (0.49) 0.17 (0.83) 1.28 (0.98) 1.44 (1.04) 1.04 (0.46) 0.33 (0.66) 0.37 (0.54) 0.67 (0.43) 0.23 (0.27)
Fast High 1.25 0.44 fixed 0.35 2 no no Heavy P* var (0.38) 1.29 (0.59) 0.2 (0.72) 1.2 (1.18) 1.79 (1.31) 1.04 (0.42) 0.3 (0.61) 0.2 (0.68) 0.44 (0.58) 0.24 (0.26)
Fast High 0.77 0 fixed 0.35 2 no no Light P* varied (0.7) 1.31 (0.54) 0.13 (0.98) -0.32 (4.14) -0.23 (11.26) 0.92 (0.49) 0.27 (0.7) 1.14 (0.52) 0.77 (0.52) 0.24 (0.31)
Fast High 1.25 0 fixed 0.35 2 no no Light P* varied (0.7) 1.13 (0.77) 0.23 (0.65) -0.32 (33.15) -0.28 (7.69) 0.99 (0.43) 0.3 (0.57) 0.95 (0.71) 0.67 (0.86) 0.3 (0.31)
Fast High 0.77 0.44 fixed 0.35 2 no no Light P* varied (0.7) 1.3 (0.48) 0.1 (1.03) -0.28 (2.27) -0.19 (4.22) 0.9 (0.48) 0.27 (0.7) 0.92 (0.46) 0.65 (0.44) 0.22 (0.31)
Fast High 1.25 0.44 fixed 0.35 2 no no Light P* varied (0.7) 1.26 (0.59) 0.17 (0.87) -0.33 (4.85) -0.24 (15.69) 0.94 (0.45) 0.27 (0.64) 0.59 (0.55) 0.41 (0.59) 0.24 (0.29)
Fast High 0.77 0 fixed 0.35 2 no no Moderate P* varied (0.7) 1.28 (0.5) 0.1 (1.03) 0.23 (2.66) 0.27 (2.07) 0.88 (0.47) 0.27 (0.72) 0.76 (0.6) 0.75 (0.55) 0.23 (0.29)
Fast High 1.25 0 fixed 0.35 2 no no Moderate P* varied (0.7) 1.18 (0.71) 0.2 (0.69) 0.18 (2.81) 0.28 (2.59) 0.95 (0.42) 0.27 (0.59) 0.62 (0.94) 0.62 (0.79) 0.3 (0.33)
Fast High 0.77 0.44 fixed 0.35 2 no no Moderate P* varied (0.7) 1.31 (0.46) 0.1 (1.1) 0.26 (2.8) 0.31 (1.9) 0.87 (0.47) 0.27 (0.73) 0.64 (0.51) 0.64 (0.46) 0.21 (0.28)
Fast High 1.25 0.44 fixed 0.35 2 no no Moderate P* varied (0.7) 1.26 (0.56) 0.13 (0.93) 0.27 (2.53) 0.3 (2.07) 0.9 (0.43) 0.27 (0.67) 0.39 (0.62) 0.41 (0.59) 0.23 (0.29)
Fast High 0.77 0 fixed 0.35 2 no no Heavy P* varied (0.7) 1.32 (0.51) 0.13 (0.83) 1.46 (1.02) 1.52 (1.21) 0.93 (0.47) 0.27 (0.71) 0.39 (0.69) 0.79 (0.57) 0.25 (0.3)
Fast High 1.25 0 fixed 0.35 2 no no Heavy P* varied (0.7) 1.25 (0.77) 0.23 (0.64) 1.37 (1.41) 1.57 (1.79) 0.95 (0.43) 0.27 (0.6) 0.27 (1.04) 0.72 (1.06) 0.31 (0.32)
Fast High 0.77 0.44 fixed 0.35 2 no no Heavy P* varied (0.7) 1.37 (0.47) 0.1 (0.91) 1.62 (0.83) 1.6 (0.96) 0.91 (0.48) 0.27 (0.74) 0.3 (0.64) 0.66 (0.45) 0.23 (0.27)
Fast High 1.25 0.44 fixed 0.35 2 no no Heavy P* varied (0.7) 1.39 (0.56) 0.15 (0.77) 1.57 (1.02) 1.99 (1.24) 0.89 (0.44) 0.23 (0.69) 0.17 (0.78) 0.43 (0.59) 0.24 (0.26)
Fast High 0.77 0 fixed 0.35 2 no no Light P* varied (1.0) 1.37 (0.51) 0.1 (1.03) -0.27 (5.21) -0.18 (40.97) 0.83 (0.49) 0.23 (0.75) 1.09 (0.54) 0.77 (0.52) 0.24 (0.3)
Fast High 1.25 0 fixed 0.35 2 no no Light P* varied (1.0) 1.18 (0.74) 0.2 (0.69) -0.27 (18.84) -0.24 (6.07) 0.92 (0.45) 0.23 (0.62) 0.9 (0.73) 0.66 (0.86) 0.3 (0.31)
Fast High 0.77 0.44 fixed 0.35 2 no no Light P* varied (1.0) 1.35 (0.46) 0.07 (1.11) -0.25 (2.66) -0.14 (6.76) 0.84 (0.49) 0.23 (0.76) 0.88 (0.48) 0.63 (0.44) 0.22 (0.3)
Fast High 1.25 0.44 fixed 0.35 2 no no Light P* varied (1.0) 1.31 (0.57) 0.13 (0.93) -0.29 (6.42) -0.18 (101.85) 0.87 (0.46) 0.23 (0.7) 0.57 (0.57) 0.4 (0.59) 0.24 (0.29)
Fast High 0.77 0 fixed 0.35 2 no no Moderate P* varied (1.0) 1.34 (0.49) 0.07 (1.12) 0.29 (2.27) 0.32 (1.87) 0.8 (0.49) 0.2 (0.78) 0.71 (0.63) 0.74 (0.56) 0.23 (0.29)
Fast High 1.25 0 fixed 0.35 2 no no Moderate P* varied (1.0) 1.21 (0.69) 0.2 (0.75) 0.24 (2.56) 0.36 (2.43) 0.86 (0.44) 0.23 (0.66) 0.58 (0.98) 0.62 (0.79) 0.3 (0.32)
Fast High 0.77 0.44 fixed 0.35 2 no no Moderate P* varied (1.0) 1.39 (0.44) 0.07 (1.17) 0.32 (2.26) 0.38 (1.67) 0.79 (0.48) 0.2 (0.8) 0.59 (0.54) 0.63 (0.46) 0.21 (0.28)
Fast High 1.25 0.44 fixed 0.35 2 no no Moderate P* varied (1.0) 1.31 (0.54) 0.1 (1.02) 0.34 (2.16) 0.41 (1.86) 0.82 (0.44) 0.22 (0.74) 0.36 (0.65) 0.4 (0.59) 0.23 (0.28)
Fast High 0.77 0 fixed 0.35 2 no no Heavy P* varied (1.0) 1.39 (0.49) 0.1 (0.83) 1.64 (0.94) 1.66 (1.15) 0.84 (0.47) 0.23 (0.78) 0.33 (0.77) 0.78 (0.56) 0.25 (0.29)
Fast High 1.25 0 fixed 0.35 2 no no Heavy P* varied (1.0) 1.32 (0.75) 0.2 (0.66) 1.65 (1.33) 1.67 (1.75) 0.86 (0.44) 0.23 (0.64) 0.24 (1.11) 0.71 (1.08) 0.31 (0.31)
Fast High 0.77 0.44 fixed 0.35 2 no no Heavy P* varied (1.0) 1.44 (0.45) 0.1 (0.93) 1.81 (0.75) 1.76 (0.91) 0.83 (0.48) 0.2 (0.78) 0.26 (0.71) 0.66 (0.45) 0.22 (0.27)
Fast High 1.25 0.44 fixed 0.35 2 no no Heavy P* varied (1.0) 1.5 (0.53) 0.13 (0.8) 1.81 (0.94) 2.17 (1.18) 0.8 (0.45) 0.2 (0.74) 0.14 (0.86) 0.44 (0.58) 0.24 (0.25)
Fast High 0.77 0 fixed 0.35 2 no no Light P* fixed (0.38) 1.14 (0.61) 0.2 (0.88) -0.36 (2.95) -0.39 (3.29) 1.15 (0.5) 0.37 (0.64) 1.2 (0.49) 0.77 (0.49) 0.24 (0.32)
Fast High 1.25 0 fixed 0.35 2 no no Light P* fixed (0.38) 0.87 (0.9) 0.33 (0.59) -0.4 (64.16) -0.5 (230.79) 1.4 (0.41) 0.47 (0.49) 1 (0.67) 0.63 (0.85) 0.29 (0.34)
Fast High 0.77 0.44 fixed 0.35 2 no no Light P* fixed (0.38) 1.17 (0.54) 0.17 (0.94) -0.34 (1.79) -0.34 (2.1) 1.15 (0.49) 0.37 (0.66) 0.98 (0.44) 0.63 (0.41) 0.2 (0.32)
Fast High 1.25 0.44 fixed 0.35 2 no no Light P* fixed (0.38) 1.06 (0.7) 0.23 (0.8) -0.39 (3.25) -0.43 (3.28) 1.24 (0.47) 0.4 (0.58) 0.63 (0.52) 0.4 (0.58) 0.22 (0.31)
Fast High 0.77 0 fixed 0.35 2 no no Moderate P* fixed (0.38) 1.13 (0.59) 0.17 (0.93) 0.06 (4.82) 0.05 (3.24) 1.13 (0.5) 0.37 (0.64) 0.86 (0.51) 0.75 (0.54) 0.22 (0.31)
Fast High 1.25 0 fixed 0.35 2 no no Moderate P* fixed (0.38) 0.88 (0.86) 0.33 (0.62) -0.05 (3.91) -0.07 (3.41) 1.43 (0.41) 0.47 (0.49) 0.72 (0.81) 0.58 (0.79) 0.29 (0.35)
Fast High 0.77 0.44 fixed 0.35 2 no no Moderate P* fixed (0.38) 1.12 (0.54) 0.13 (1.06) 0.1 (6.1) 0.08 (3.61) 1.13 (0.5) 0.37 (0.66) 0.72 (0.42) 0.63 (0.44) 0.2 (0.29)
Fast High 1.25 0.44 fixed 0.35 2 no no Moderate P* fixed (0.38) 1.04 (0.69) 0.23 (0.82) 0.04 (4.58) 0.02 (3.51) 1.23 (0.46) 0.4 (0.58) 0.45 (0.53) 0.39 (0.6) 0.22 (0.32)
Fast High 0.77 0 fixed 0.35 2 no no Heavy P* fixed (0.38) 1.14 (0.59) 0.23 (0.76) 0.8 (1.45) 1.1 (1.42) 1.24 (0.47) 0.4 (0.6) 0.56 (0.5) 0.77 (0.55) 0.24 (0.31)
Fast High 1.25 0 fixed 0.35 2 no no Heavy P* fixed (0.38) 1.04 (0.88) 0.33 (0.56) 0.61 (1.86) 0.98 (2.04) 1.4 (0.41) 0.47 (0.48) 0.42 (0.79) 0.67 (1.03) 0.3 (0.35)
Fast High 0.77 0.44 fixed 0.35 2 no no Heavy P* fixed (0.38) 1.19 (0.53) 0.2 (0.81) 0.8 (1.23) 1.31 (1.15) 1.18 (0.47) 0.4 (0.63) 0.44 (0.43) 0.64 (0.43) 0.21 (0.27)
Fast High 1.25 0.44 fixed 0.35 2 no no Heavy P* fixed (0.38) 1.18 (0.66) 0.27 (0.71) 0.76 (1.48) 1.39 (1.47) 1.26 (0.45) 0.43 (0.56) 0.25 (0.55) 0.41 (0.58) 0.22 (0.28)
Fast High 0.77 0 fixed 0.35 2 no no Light P* fixed (0.7) 1.23 (0.58) 0.17 (0.97) -0.32 (3.64) -0.33 (4.67) 1.05 (0.52) 0.3 (0.71) 1.15 (0.51) 0.77 (0.48) 0.22 (0.33)
Fast High 1.25 0 fixed 0.35 2 no no Light P* fixed (0.7) 0.95 (0.86) 0.3 (0.64) -0.34 (117.18) -0.44 (20.49) 1.26 (0.45) 0.4 (0.54) 0.95 (0.68) 0.64 (0.84) 0.28 (0.35)
Fast High 0.77 0.44 fixed 0.35 2 no no Light P* fixed (0.7) 1.25 (0.52) 0.13 (1.04) -0.29 (2.11) -0.28 (2.7) 1 (0.52) 0.3 (0.72) 0.93 (0.45) 0.64 (0.41) 0.2 (0.32)
Fast High 1.25 0.44 fixed 0.35 2 no no Light P* fixed (0.7) 1.15 (0.66) 0.2 (0.89) -0.33 (4.12) -0.34 (4.61) 1.09 (0.5) 0.33 (0.64) 0.59 (0.53) 0.41 (0.57) 0.21 (0.31)
Fast High 0.77 0 fixed 0.35 2 no no Moderate P* fixed (0.7) 1.21 (0.56) 0.13 (1.04) 0.14 (3.52) 0.15 (2.65) 1.02 (0.52) 0.3 (0.72) 0.81 (0.52) 0.75 (0.52) 0.21 (0.31)
Fast High 1.25 0 fixed 0.35 2 no no Moderate P* fixed (0.7) 1 (0.82) 0.27 (0.67) 0.03 (3.48) 0.05 (3.04) 1.26 (0.44) 0.4 (0.55) 0.69 (0.83) 0.58 (0.76) 0.28 (0.34)
Fast High 0.77 0.44 fixed 0.35 2 no no Moderate P* fixed (0.7) 1.23 (0.52) 0.1 (1.16) 0.17 (3.88) 0.19 (2.54) 0.97 (0.52) 0.3 (0.76) 0.68 (0.44) 0.63 (0.44) 0.19 (0.29)
Fast High 1.25 0.44 fixed 0.35 2 no no Moderate P* fixed (0.7) 1.09 (0.66) 0.17 (0.92) 0.12 (3.43) 0.15 (2.77) 1.09 (0.49) 0.33 (0.66) 0.42 (0.54) 0.4 (0.59) 0.21 (0.31)
Fast High 0.77 0 fixed 0.35 2 no no Heavy P* fixed (0.7) 1.24 (0.56) 0.18 (0.82) 0.88 (1.33) 1.31 (1.31) 1.1 (0.49) 0.33 (0.67) 0.54 (0.51) 0.77 (0.54) 0.23 (0.31)
Fast High 1.25 0 fixed 0.35 2 no no Heavy P* fixed (0.7) 1.15 (0.84) 0.3 (0.6) 0.74 (1.77) 1.27 (1.96) 1.27 (0.44) 0.4 (0.53) 0.41 (0.79) 0.67 (1.03) 0.28 (0.34)
Fast High 0.77 0.44 fixed 0.35 2 no no Heavy P* fixed (0.7) 1.31 (0.51) 0.15 (0.87) 0.97 (1.12) 1.52 (1.06) 1.04 (0.49) 0.33 (0.7) 0.42 (0.44) 0.64 (0.42) 0.21 (0.26)
Fast High 1.25 0.44 fixed 0.35 2 no no Heavy P* fixed (0.7) 1.25 (0.63) 0.23 (0.77) 0.92 (1.37) 1.78 (1.35) 1.09 (0.48) 0.33 (0.62) 0.24 (0.55) 0.41 (0.57) 0.22 (0.28)
Fast High 0.77 0 fixed 0.35 2 no no Light P* fixed (1.0) 1.27 (0.57) 0.13 (1.05) -0.27 (4.36) -0.28 (6.86) 0.96 (0.54) 0.27 (0.77) 1.09 (0.52) 0.75 (0.47) 0.22 (0.33)
Fast High 1.25 0 fixed 0.35 2 no no Light P* fixed (1.0) 1.01 (0.83) 0.27 (0.68) -0.3 (35.34) -0.43 (12.85) 1.16 (0.47) 0.33 (0.59) 0.91 (0.69) 0.64 (0.82) 0.27 (0.34)
Fast High 0.77 0.44 fixed 0.35 2 no no Light P* fixed (1.0) 1.3 (0.5) 0.1 (1.13) -0.25 (2.43) -0.23 (3.37) 0.92 (0.54) 0.27 (0.78) 0.89 (0.46) 0.62 (0.41) 0.19 (0.32)
Fast High 1.25 0.44 fixed 0.35 2 no no Light P* fixed (1.0) 1.22 (0.64) 0.17 (0.95) -0.29 (5.08) -0.31 (6.59) 1.01 (0.51) 0.3 (0.71) 0.57 (0.54) 0.4 (0.57) 0.21 (0.31)
Fast High 0.77 0 fixed 0.35 2 no no Moderate P* fixed (1.0) 1.26 (0.54) 0.1 (1.13) 0.2 (2.96) 0.23 (2.28) 0.92 (0.53) 0.27 (0.79) 0.78 (0.53) 0.74 (0.52) 0.21 (0.31)
Fast High 1.25 0 fixed 0.35 2 no no Moderate P* fixed (1.0) 1.06 (0.79) 0.27 (0.72) 0.09 (3.23) 0.11 (2.83) 1.18 (0.46) 0.37 (0.6) 0.67 (0.84) 0.59 (0.74) 0.27 (0.34)
Fast High 0.77 0.44 fixed 0.35 2 no no Moderate P* fixed (1.0) 1.3 (0.49) 0.07 (1.24) 0.23 (3) 0.26 (2.1) 0.88 (0.54) 0.27 (0.82) 0.65 (0.45) 0.61 (0.43) 0.18 (0.29)
Fast High 1.25 0.44 fixed 0.35 2 no no Moderate P* fixed (1.0) 1.19 (0.63) 0.13 (1.01) 0.15 (2.91) 0.26 (2.42) 0.99 (0.5) 0.3 (0.72) 0.41 (0.54) 0.39 (0.57) 0.2 (0.31)
Fast High 0.77 0 fixed 0.35 2 no no Heavy P* fixed (1.0) 1.32 (0.55) 0.17 (0.85) 0.96 (1.26) 1.43 (1.24) 1.03 (0.5) 0.3 (0.72) 0.52 (0.51) 0.76 (0.53) 0.22 (0.3)
Fast High 1.25 0 fixed 0.35 2 no no Heavy P* fixed (1.0) 1.18 (0.82) 0.3 (0.64) 0.78 (1.71) 1.38 (1.9) 1.16 (0.45) 0.33 (0.58) 0.4 (0.8) 0.69 (1.05) 0.28 (0.34)
Fast High 0.77 0.44 fixed 0.35 2 no no Heavy P* fixed (1.0) 1.37 (0.49) 0.13 (0.9) 1.09 (1.04) 1.62 (0.99) 0.97 (0.5) 0.3 (0.74) 0.42 (0.45) 0.64 (0.42) 0.2 (0.27)
Fast High 1.25 0.44 fixed 0.35 2 no no Heavy P* fixed (1.0) 1.34 (0.61) 0.2 (0.8) 0.99 (1.3) 1.99 (1.28) 0.99 (0.49) 0.3 (0.69) 0.23 (0.56) 0.4 (0.56) 0.21 (0.27)
Fast High 0.77 0 fixed 0.35 2 no no Light 75% of F_lim 1.24 (0.58) 0.13 (0.98) -0.31 (3.82) -0.33 (5.3) 1.01 (0.52) 0.3 (0.72) 1.13 (0.51) 0.76 (0.48) 0.22 (0.32)
Fast High 1.25 0 fixed 0.35 2 no no Light 75% of F_lim 0.98 (0.84) 0.3 (0.65) -0.33 (67.09) -0.42 (16.86) 1.22 (0.46) 0.37 (0.56) 0.94 (0.68) 0.64 (0.83) 0.28 (0.34)
Fast High 0.77 0.44 fixed 0.35 2 no no Light 75% of F_lim 1.25 (0.51) 0.1 (1.07) -0.28 (2.2) -0.26 (2.93) 0.99 (0.53) 0.3 (0.73) 0.91 (0.45) 0.64 (0.41) 0.2 (0.31)
Fast High 1.25 0.44 fixed 0.35 2 no no Light 75% of F_lim 1.17 (0.65) 0.2 (0.9) -0.32 (4.37) -0.32 (5.27) 1.06 (0.5) 0.33 (0.66) 0.58 (0.53) 0.4 (0.57) 0.21 (0.31)
Fast High 0.77 0 fixed 0.35 2 no no Moderate 75% of F_lim 1.23 (0.55) 0.13 (1.06) 0.16 (3.27) 0.18 (2.49) 0.98 (0.52) 0.3 (0.75) 0.8 (0.53) 0.75 (0.52) 0.21 (0.31)
Fast High 1.25 0 fixed 0.35 2 no no Moderate 75% of F_lim 1.05 (0.8) 0.27 (0.68) 0.05 (3.38) 0.06 (2.95) 1.21 (0.45) 0.38 (0.56) 0.68 (0.83) 0.58 (0.76) 0.27 (0.34)
Fast High 0.77 0.44 fixed 0.35 2 no no Moderate 75% of F_lim 1.25 (0.51) 0.1 (1.17) 0.18 (3.45) 0.21 (2.35) 0.94 (0.52) 0.3 (0.78) 0.67 (0.44) 0.62 (0.43) 0.19 (0.29)
Fast High 1.25 0.44 fixed 0.35 2 no no Moderate 75% of F_lim 1.15 (0.64) 0.17 (0.95) 0.14 (3.2) 0.19 (2.62) 1.04 (0.49) 0.33 (0.67) 0.42 (0.54) 0.39 (0.58) 0.21 (0.31)
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Fast High 0.77 0 fixed 0.35 2 no no Heavy 75% of F_lim 1.25 (0.56) 0.17 (0.83) 0.93 (1.29) 1.39 (1.29) 1.07 (0.49) 0.3 (0.69) 0.52 (0.51) 0.77 (0.54) 0.23 (0.31)
Fast High 1.25 0 fixed 0.35 2 no no Heavy 75% of F_lim 1.15 (0.83) 0.3 (0.62) 0.77 (1.74) 1.29 (1.94) 1.22 (0.44) 0.37 (0.55) 0.4 (0.8) 0.68 (1.04) 0.28 (0.33)
Fast High 0.77 0.44 fixed 0.35 2 no no Heavy 75% of F_lim 1.33 (0.5) 0.13 (0.89) 1.05 (1.08) 1.57 (1.03) 0.99 (0.5) 0.3 (0.71) 0.42 (0.45) 0.64 (0.42) 0.21 (0.27)
Fast High 1.25 0.44 fixed 0.35 2 no no Heavy 75% of F_lim 1.28 (0.62) 0.2 (0.78) 0.95 (1.33) 1.85 (1.33) 1.04 (0.48) 0.33 (0.65) 0.23 (0.56) 0.41 (0.57) 0.22 (0.28)
Fast High 0.77 0 fixed 0.35 2 no no Light 75% of F_lim 0.66 (0.76) 0.4 (0.55) -0.61 (1.51) -0.64 (1.26) 1.87 (0.37) 0.63 (0.39) 1.47 (0.42) 0.76 (0.52) 0.28 (0.29)
Fast High 1.25 0 fixed 0.35 2 no no Light 75% of F_lim 0.53 (1.06) 0.5 (0.38) -0.66 (7.4) -0.75 (4.45) 2.08 (0.28) 0.67 (0.28) 1.24 (0.61) 0.57 (0.95) 0.34 (0.35)
Fast High 0.77 0.44 fixed 0.35 2 no no Light 75% of F_lim 0.68 (0.68) 0.38 (0.6) -0.63 (0.99) -0.64 (0.91) 1.85 (0.37) 0.63 (0.4) 1.22 (0.36) 0.62 (0.45) 0.25 (0.28)
Fast High 1.25 0.44 fixed 0.35 2 no no Light 75% of F_lim 0.61 (0.9) 0.5 (0.47) -0.66 (1.57) -0.78 (1.22) 2.02 (0.32) 0.67 (0.32) 0.78 (0.46) 0.33 (0.68) 0.28 (0.3)
Fast High 0.77 0 fixed 0.35 2 no no Moderate 75% of F_lim 0.65 (0.73) 0.37 (0.55) -0.32 (6.05) -0.37 (10.28) 1.9 (0.35) 0.67 (0.36) 1.04 (0.44) 0.71 (0.59) 0.28 (0.28)
Fast High 1.25 0 fixed 0.35 2 no no Moderate 75% of F_lim 0.51 (1.07) 0.5 (0.38) -0.4 (11.5) -0.51 (7.72) 2.1 (0.27) 0.67 (0.26) 0.85 (0.77) 0.5 (0.92) 0.36 (0.33)
Fast High 0.77 0.44 fixed 0.35 2 no no Moderate 75% of F_lim 0.7 (0.68) 0.4 (0.62) -0.31 (2.83) -0.35 (3.77) 1.86 (0.37) 0.63 (0.37) 0.86 (0.34) 0.57 (0.5) 0.25 (0.26)
Fast High 1.25 0.44 fixed 0.35 2 no no Moderate 75% of F_lim 0.52 (0.88) 0.47 (0.48) -0.35 (6.77) -0.54 (6.01) 2.08 (0.31) 0.7 (0.3) 0.54 (0.48) 0.29 (0.74) 0.27 (0.29)
Fast High 0.77 0 fixed 0.35 2 no no Heavy 75% of F_lim 0.71 (0.72) 0.43 (0.51) 0.16 (2.4) 0.35 (2.2) 1.93 (0.35) 0.67 (0.35) 0.66 (0.48) 0.76 (0.57) 0.29 (0.31)
Fast High 1.25 0 fixed 0.35 2 no no Heavy 75% of F_lim 0.66 (1.03) 0.5 (0.39) 0.06 (2.48) 0.02 (2.71) 2.1 (0.28) 0.7 (0.28) 0.5 (0.79) 0.58 (1.03) 0.35 (0.34)
Fast High 0.77 0.44 fixed 0.35 2 no no Heavy 75% of F_lim 0.72 (0.67) 0.43 (0.55) 0.18 (2.24) 0.41 (1.98) 1.9 (0.36) 0.67 (0.37) 0.53 (0.38) 0.6 (0.46) 0.26 (0.25)
Fast High 1.25 0.44 fixed 0.35 2 no no Heavy 75% of F_lim 0.67 (0.83) 0.47 (0.45) 0.18 (2.25) 0.22 (2.41) 2.03 (0.31) 0.67 (0.32) 0.3 (0.52) 0.36 (0.67) 0.27 (0.25)
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Medium Low 0.77 0.00 fixed 0.35 2 no no Light OFL 0.88 (0.37) 0 (1.61) -0.34 (0.84) -0.55 (0.69) 1.1 (0.3) 0.5 (0.53) 1.74 (0.41) 0.9 (0.35) 0.1 (0.3)
Medium Low 1.25 0.00 fixed 0.35 2 no no Light OFL 0.78 (0.6) 0.17 (1.02) -0.38 (1.52) -0.59 (1.69) 1.11 (0.36) 0.5 (0.47) 1.58 (0.58) 0.73 (0.68) 0.14 (0.27)
Medium Low 0.77 0.44 fixed 0.35 2 no no Light OFL 0.88 (0.37) 0 (1.61) -0.34 (0.84) -0.55 (0.69) 1.1 (0.3) 0.5 (0.53) 1.74 (0.41) 0.9 (0.35) 0.1 (0.3)
Medium Low 1.25 0.44 fixed 0.35 2 no no Light OFL 0.78 (0.6) 0.17 (1.02) -0.38 (1.52) -0.59 (1.69) 1.11 (0.36) 0.5 (0.47) 1.58 (0.58) 0.73 (0.68) 0.14 (0.27)
Medium Low 0.77 0.44 fixed 0.35 2 yes yes Light OFL 0.91 (0.28) 0 (2.25) -0.29 (0.8) -0.47 (0.61) 1.08 (0.29) 0.5 (0.56) 1.24 (0.38) 0.71 (0.26) 0.09 (0.3)
Medium Low 1.25 0.44 fixed 0.35 2 yes yes Light OFL 0.8 (0.39) 0 (1.59) -0.32 (0.94) -0.53 (0.83) 1.08 (0.3) 0.5 (0.55) 0.81 (0.45) 0.41 (0.41) 0.1 (0.3)
Medium Low 0.77 0.44 fixed 0.35 5 yes yes Light OFL 0.9 (0.33) 0 (1.56) -0.31 (0.81) -0.52 (0.62) 1.13 (0.41) 0.5 (0.48) 1.31 (0.39) 0.68 (0.37) 0.06 (0.46)
Medium Low 1.25 0.44 fixed 0.35 5 yes yes Light OFL 0.74 (0.52) 0.13 (1.14) -0.34 (0.97) -0.59 (0.81) 1.2 (0.52) 0.53 (0.45) 0.89 (0.45) 0.35 (0.59) 0.08 (0.45)
Medium Low 0.77 0.44 fixed 0.35 2 yes yes Light OFL 0.91 (0.27) 0 (2.07) -0.31 (0.77) -0.47 (0.6) 1.1 (0.27) 0.5 (0.5) 1.29 (0.38) 0.71 (0.26) 0.12 (0.27)
Medium Low 1.25 0.44 fixed 0.35 2 yes yes Light OFL 0.8 (0.38) 0 (1.49) -0.34 (0.91) -0.54 (0.81) 1.11 (0.28) 0.5 (0.49) 0.84 (0.45) 0.4 (0.41) 0.15 (0.26)
Medium Low 0.77 0.44 fixed 0.35 5 yes yes Light OFL 0.85 (0.52) 0 (1.57) -0.26 (0.92) -0.51 (0.66) 1.14 (0.84) 0.53 (0.53) 1.19 (0.4) 0.64 (0.51) 0.1 (0.43)
Medium Low 1.25 0.44 fixed 0.35 5 yes yes Light OFL 0.67 (0.69) 0.1 (1.17) -0.29 (1.11) -0.59 (0.85) 1.21 (0.91) 0.57 (0.5) 0.79 (0.46) 0.34 (0.7) 0.12 (0.38)
Medium Low 0.77 0.44 fixed 0.35 2 yes yes Light OFL 0.85 (0.48) 0 (1.7) -0.2 (0.98) -0.53 (0.65) 1.13 (0.9) 0.53 (0.55) 1.06 (0.33) 0.67 (0.45) 0.06 (0.52)
Medium Low 1.25 0.44 fixed 0.35 2 yes yes Light OFL 0.66 (0.67) 0.1 (1.19) -0.23 (1.28) -0.6 (0.86) 1.18 (0.91) 0.57 (0.51) 0.69 (0.4) 0.35 (0.66) 0.07 (0.49)
Medium Low 0.77 0.44 fixed 0.35 5 yes yes Light OFL 0.62 (0.81) 0.02 (1.21) -0.17 (1.15) -0.53 (0.73) 1.28 (0.81) 0.67 (0.5) 1.01 (0.31) 0.61 (0.67) 0.04 (0.66)
Medium Low 1.25 0.44 fixed 0.35 5 yes yes Light OFL 0.25 (1.16) 0.32 (0.88) -0.2 (1.55) -0.6 (1) 1.91 (0.7) 0.72 (0.45) 0.66 (0.39) 0.26 (0.97) 0.05 (0.59)
Medium Low 0.77 0.44 fixed 0.35 2 yes yes Light OFL 0.87 (0.46) 0 (1.57) -0.22 (0.93) -0.56 (0.62) 1.16 (0.81) 0.53 (0.48) 1.09 (0.33) 0.66 (0.46) 0.07 (0.48)
Medium Low 1.25 0.44 fixed 0.35 2 yes yes Light OFL 0.65 (0.72) 0.13 (1.1) -0.25 (1.21) -0.63 (0.81) 1.23 (0.88) 0.6 (0.45) 0.73 (0.4) 0.33 (0.72) 0.09 (0.42)
Medium Low 0.77 0.44 fixed 0.35 5 yes yes Light OFL 0.5 (0.91) 0.17 (1.05) -0.15 (1.31) -0.54 (0.73) 1.42 (0.75) 0.68 (0.46) 0.94 (0.3) 0.57 (0.74) 0.05 (0.56)
Medium Low 1.25 0.44 fixed 0.35 5 yes yes Light OFL 0.06 (1.29) 0.35 (0.82) -0.17 (1.8) -0.62 (1) 2.88 (0.65) 0.73 (0.41) 0.63 (0.38) 0.16 (1.07) 0.08 (0.49)
Medium Low 0.77 0.00 fixed 0.35 2 no no Moderate OFL 0.9 (0.34) 0 (2.32) -0.09 (4.05) -0.14 (4.39) 1.01 (0.2) 0.43 (0.56) 1.12 (0.37) 0.89 (0.36) 0.09 (0.24)
Medium Low 1.25 0.00 fixed 0.35 2 no no Moderate OFL 0.82 (0.56) 0.1 (1.15) -0.15 (69.52) -0.18 (29.62) 1.03 (0.27) 0.47 (0.49) 0.98 (0.62) 0.73 (0.65) 0.13 (0.26)
Medium Low 0.77 0.44 fixed 0.35 2 no no Moderate OFL 0.9 (0.34) 0 (2.32) -0.09 (4.05) -0.14 (4.39) 1.01 (0.2) 0.43 (0.56) 1.12 (0.37) 0.89 (0.36) 0.09 (0.24)
Medium Low 1.25 0.44 fixed 0.35 2 no no Moderate OFL 0.82 (0.56) 0.1 (1.15) -0.15 (69.52) -0.18 (29.62) 1.03 (0.27) 0.47 (0.49) 0.98 (0.62) 0.73 (0.65) 0.13 (0.26)
Medium Low 0.77 0.44 fixed 0.35 2 yes yes Moderate OFL 0.95 (0.27) 0 (3.36) -0.04 (6.01) -0.06 (14.49) 1 (0.2) 0.43 (0.56) 0.8 (0.29) 0.72 (0.27) 0.07 (0.24)
Medium Low 1.25 0.44 fixed 0.35 2 yes yes Moderate OFL 0.85 (0.39) 0 (1.93) -0.08 (6.31) -0.1 (12.17) 1.02 (0.2) 0.47 (0.55) 0.49 (0.4) 0.4 (0.42) 0.08 (0.25)
Medium Low 0.77 0.44 fixed 0.35 5 yes yes Moderate OFL 0.94 (0.32) 0 (2.07) -0.05 (5.67) -0.06 (8.29) 1.04 (0.29) 0.45 (0.54) 0.81 (0.33) 0.72 (0.36) 0.05 (0.36)
Medium Low 1.25 0.44 fixed 0.35 5 yes yes Moderate OFL 0.8 (0.49) 0 (1.44) -0.08 (6.05) -0.13 (7.76) 1.08 (0.42) 0.47 (0.49) 0.5 (0.44) 0.37 (0.56) 0.07 (0.38)
Medium Low 0.77 0.44 fixed 0.35 2 yes yes Moderate OFL 0.96 (0.27) 0 (3.19) -0.04 (5.87) -0.06 (15.4) 1 (0.18) 0.43 (0.53) 0.81 (0.29) 0.72 (0.28) 0.1 (0.22)
Medium Low 1.25 0.44 fixed 0.35 2 yes yes Moderate OFL 0.86 (0.39) 0 (1.83) -0.09 (6.12) -0.11 (12.32) 1.02 (0.19) 0.47 (0.5) 0.5 (0.4) 0.41 (0.43) 0.12 (0.24)
Medium Low 0.77 0.44 fixed 0.35 5 yes yes Moderate OFL 0.92 (0.36) 0 (2.07) -0.04 (6) -0.08 (6.9) 1.04 (0.48) 0.47 (0.56) 0.79 (0.32) 0.71 (0.37) 0.07 (0.34)
Medium Low 1.25 0.44 fixed 0.35 5 yes yes Moderate OFL 0.79 (0.56) 0.02 (1.42) -0.08 (6.55) -0.13 (6.86) 1.09 (0.73) 0.47 (0.53) 0.49 (0.43) 0.36 (0.58) 0.09 (0.33)
Medium Low 0.77 0.44 fixed 0.35 2 yes yes Moderate OFL 0.93 (0.34) 0 (2.39) -0.05 (5.63) -0.1 (8.33) 1.05 (0.34) 0.5 (0.55) 0.81 (0.24) 0.7 (0.3) 0.05 (0.3)
Medium Low 1.25 0.44 fixed 0.35 2 yes yes Moderate OFL 0.81 (0.53) 0 (1.47) -0.09 (6.14) -0.15 (8.02) 1.07 (0.68) 0.5 (0.51) 0.51 (0.36) 0.38 (0.51) 0.06 (0.33)
Medium Low 0.77 0.44 fixed 0.35 5 yes yes Moderate OFL 0.84 (0.59) 0 (1.67) -0.05 (5.45) -0.12 (4.91) 1.14 (0.83) 0.57 (0.56) 0.82 (0.24) 0.68 (0.47) 0.03 (0.55)
Medium Low 1.25 0.44 fixed 0.35 5 yes yes Moderate OFL 0.6 (0.92) 0.13 (1.1) -0.11 (6.02) -0.2 (5.31) 1.35 (0.8) 0.67 (0.5) 0.51 (0.36) 0.31 (0.79) 0.04 (0.58)
Medium Low 0.77 0.44 fixed 0.35 2 yes yes Moderate OFL 0.93 (0.33) 0 (2.37) -0.05 (5.5) -0.1 (8.46) 1.05 (0.29) 0.5 (0.51) 0.82 (0.24) 0.71 (0.31) 0.06 (0.29)
Medium Low 1.25 0.44 fixed 0.35 2 yes yes Moderate OFL 0.81 (0.54) 0.03 (1.41) -0.1 (5.95) -0.15 (7.77) 1.1 (0.65) 0.53 (0.47) 0.51 (0.36) 0.39 (0.53) 0.07 (0.31)
Medium Low 0.77 0.44 fixed 0.35 5 yes yes Moderate OFL 0.83 (0.61) 0 (1.62) -0.04 (5.63) -0.13 (4.65) 1.16 (0.83) 0.57 (0.55) 0.81 (0.24) 0.66 (0.49) 0.03 (0.5)
Medium Low 1.25 0.44 fixed 0.35 5 yes yes Moderate OFL 0.53 (0.96) 0.17 (1.07) -0.1 (6.26) -0.21 (5.1) 1.42 (0.78) 0.7 (0.5) 0.51 (0.36) 0.32 (0.82) 0.05 (0.5)
Medium Low 0.77 0.00 fixed 0.35 2 no no Heavy OFL 1.06 (0.33) 0.03 (1.35) 0.36 (1.14) 0.73 (1.03) 1.01 (0.21) 0.43 (0.56) 0.55 (0.4) 0.92 (0.38) 0.09 (0.23)
Medium Low 1.25 0.00 fixed 0.35 2 no no Heavy OFL 1.07 (0.56) 0.17 (0.89) 0.28 (1.84) 0.63 (1.59) 1.02 (0.24) 0.47 (0.49) 0.45 (0.76) 0.78 (0.91) 0.13 (0.24)
Medium Low 0.77 0.44 fixed 0.35 2 no no Heavy OFL 1.06 (0.33) 0.03 (1.35) 0.36 (1.14) 0.73 (1.03) 1.01 (0.21) 0.43 (0.56) 0.55 (0.4) 0.92 (0.38) 0.09 (0.23)
Medium Low 1.25 0.44 fixed 0.35 2 no no Heavy OFL 1.07 (0.56) 0.17 (0.89) 0.28 (1.84) 0.63 (1.59) 1.02 (0.24) 0.47 (0.49) 0.45 (0.76) 0.78 (0.91) 0.13 (0.24)
Medium Low 0.77 0.44 fixed 0.35 2 yes yes Heavy OFL 1.07 (0.26) 0.05 (1.15) 0.44 (0.7) 1.04 (0.67) 0.97 (0.18) 0.4 (0.63) 0.38 (0.32) 0.71 (0.26) 0.07 (0.22)
Medium Low 1.25 0.44 fixed 0.35 2 yes yes Heavy OFL 1.02 (0.38) 0.12 (1.07) 0.35 (1.11) 0.93 (1.02) 0.98 (0.19) 0.4 (0.61) 0.2 (0.5) 0.37 (0.43) 0.08 (0.23)
Medium Low 0.77 0.44 fixed 0.35 5 yes yes Heavy OFL 1.07 (0.29) 0.07 (1.2) 0.47 (0.77) 1.15 (0.67) 0.96 (0.23) 0.37 (0.64) 0.36 (0.36) 0.73 (0.31) 0.05 (0.3)
Medium Low 1.25 0.44 fixed 0.35 5 yes yes Heavy OFL 1.01 (0.43) 0.13 (1.02) 0.36 (1.23) 1.04 (1.06) 0.97 (0.28) 0.37 (0.59) 0.19 (0.53) 0.39 (0.48) 0.06 (0.32)
Medium Low 0.77 0.44 fixed 0.35 2 yes yes Heavy OFL 1.08 (0.26) 0.03 (1.15) 0.49 (0.65) 1.08 (0.66) 0.95 (0.17) 0.37 (0.62) 0.36 (0.32) 0.72 (0.26) 0.1 (0.2)
Medium Low 1.25 0.44 fixed 0.35 2 yes yes Heavy OFL 1.02 (0.38) 0.1 (1.05) 0.4 (1.03) 0.98 (1) 0.96 (0.18) 0.4 (0.59) 0.19 (0.5) 0.38 (0.43) 0.12 (0.22)
Medium Low 0.77 0.44 fixed 0.35 5 yes yes Heavy OFL 1.08 (0.31) 0.1 (1.17) 0.31 (1.11) 1.1 (0.73) 1 (0.33) 0.4 (0.57) 0.43 (0.33) 0.72 (0.31) 0.08 (0.23)
Medium Low 1.25 0.44 fixed 0.35 5 yes yes Heavy OFL 1 (0.47) 0.17 (0.95) 0.2 (1.86) 0.87 (1.2) 1.02 (0.62) 0.43 (0.54) 0.23 (0.5) 0.37 (0.51) 0.1 (0.28)
Medium Low 0.77 0.44 fixed 0.35 2 yes yes Heavy OFL 1.11 (0.29) 0.1 (1.09) 0.25 (1.17) 1.06 (0.72) 1 (0.21) 0.4 (0.59) 0.46 (0.26) 0.74 (0.26) 0.05 (0.24)
Medium Low 1.25 0.44 fixed 0.35 2 yes yes Heavy OFL 1.02 (0.44) 0.17 (0.91) 0.16 (2.14) 0.89 (1.21) 1.03 (0.52) 0.43 (0.55) 0.25 (0.44) 0.38 (0.46) 0.06 (0.33)
Medium Low 0.77 0.44 fixed 0.35 5 yes yes Heavy OFL 1.2 (0.36) 0.1 (1.17) 0.19 (1.6) 0.99 (0.93) 0.99 (0.77) 0.37 (0.6) 0.49 (0.26) 0.72 (0.33) 0.03 (0.43)
Medium Low 1.25 0.44 fixed 0.35 5 yes yes Heavy OFL 1.01 (0.7) 0.27 (0.84) 0.09 (3.23) 0.63 (1.82) 1.1 (0.99) 0.5 (0.57) 0.27 (0.43) 0.32 (0.7) 0.04 (0.65)
Medium Low 0.77 0.44 fixed 0.35 2 yes yes Heavy OFL 1.11 (0.29) 0.1 (1.04) 0.28 (1.05) 1.16 (0.67) 0.98 (0.19) 0.37 (0.57) 0.44 (0.26) 0.75 (0.26) 0.06 (0.22)
Medium Low 1.25 0.44 fixed 0.35 2 yes yes Heavy OFL 1.03 (0.44) 0.17 (0.91) 0.19 (1.9) 0.95 (1.13) 1 (0.52) 0.4 (0.54) 0.24 (0.44) 0.39 (0.46) 0.08 (0.28)
Medium Low 0.77 0.44 fixed 0.35 5 yes yes Heavy OFL 1.23 (0.37) 0.13 (1.1) 0.1 (2.49) 0.92 (1.04) 1.01 (0.83) 0.4 (0.57) 0.53 (0.25) 0.71 (0.35) 0.05 (0.35)
Medium Low 1.25 0.44 fixed 0.35 5 yes yes Heavy OFL 0.99 (0.74) 0.27 (0.8) 0.01 (6.3) 0.53 (2.1) 1.14 (0.98) 0.5 (0.56) 0.29 (0.43) 0.31 (0.74) 0.06 (0.52)
Medium Low 0.77 0.00 fixed 0.35 2 no no Light P* var (0.38) 1.04 (0.31) 0 (2.11) -0.3 (0.97) -0.44 (0.89) 0.91 (0.26) 0.3 (0.67) 1.6 (0.42) 0.94 (0.34) 0.1 (0.29)
Medium Low 1.25 0.00 fixed 0.35 2 no no Light P* var (0.38) 0.97 (0.5) 0.03 (1.27) -0.34 (1.85) -0.49 (2.55) 0.9 (0.28) 0.3 (0.61) 1.45 (0.59) 0.79 (0.64) 0.14 (0.26)
Medium Low 0.77 0.44 fixed 0.35 2 no no Light P* var (0.38) 1.04 (0.31) 0 (2.11) -0.3 (0.97) -0.44 (0.89) 0.91 (0.26) 0.3 (0.67) 1.6 (0.42) 0.94 (0.34) 0.1 (0.29)
Medium Low 1.25 0.44 fixed 0.35 2 no no Light P* var (0.38) 0.97 (0.5) 0.03 (1.27) -0.34 (1.85) -0.49 (2.55) 0.9 (0.28) 0.3 (0.61) 1.45 (0.59) 0.79 (0.64) 0.14 (0.26)
Medium Low 0.77 0.00 fixed 0.35 2 no no Moderate P* var (0.38) 1.05 (0.3) 0 (3.45) -0.02 (53.81) 0.01 (9.88) 0.85 (0.18) 0.23 (0.78) 1.02 (0.38) 0.9 (0.35) 0.09 (0.24)
Medium Low 1.25 0.00 fixed 0.35 2 no no Moderate P* var (0.38) 0.97 (0.48) 0 (1.57) -0.07 (9.55) -0.01 (4.46) 0.84 (0.19) 0.23 (0.7) 0.87 (0.64) 0.75 (0.63) 0.13 (0.26)
Medium Low 0.77 0.44 fixed 0.35 2 no no Moderate P* var (0.38) 1.05 (0.3) 0 (3.45) -0.02 (53.81) 0.01 (9.88) 0.85 (0.18) 0.23 (0.78) 1.02 (0.38) 0.9 (0.35) 0.09 (0.24)
Medium Low 1.25 0.44 fixed 0.35 2 no no Moderate P* var (0.38) 0.97 (0.48) 0 (1.57) -0.07 (9.55) -0.01 (4.46) 0.84 (0.19) 0.23 (0.7) 0.87 (0.64) 0.75 (0.63) 0.13 (0.26)
Medium Low 0.77 0.00 fixed 0.35 2 no no Heavy P* var (0.38) 1.21 (0.29) 0.03 (1.36) 0.59 (0.76) 1.08 (0.82) 0.82 (0.19) 0.2 (0.85) 0.41 (0.47) 0.96 (0.37) 0.09 (0.24)
Medium Low 1.25 0.00 fixed 0.35 2 no no Heavy P* var (0.38) 1.24 (0.49) 0.1 (1.05) 0.54 (1.27) 1.1 (1.3) 0.8 (0.21) 0.2 (0.77) 0.33 (0.89) 0.82 (0.94) 0.13 (0.24)
Medium Low 0.77 0.44 fixed 0.35 2 no no Heavy P* var (0.38) 1.21 (0.29) 0.03 (1.36) 0.59 (0.76) 1.08 (0.82) 0.82 (0.19) 0.2 (0.85) 0.41 (0.47) 0.96 (0.37) 0.09 (0.24)
Medium Low 1.25 0.44 fixed 0.35 2 no no Heavy P* var (0.38) 1.24 (0.49) 0.1 (1.05) 0.54 (1.27) 1.1 (1.3) 0.8 (0.21) 0.2 (0.77) 0.33 (0.89) 0.82 (0.94) 0.13 (0.24)
Medium Low 0.77 0.00 fixed 0.35 2 no no Light P* varied (0.7) 1.12 (0.29) 0 (2.65) -0.26 (1.09) -0.39 (1.06) 0.82 (0.25) 0.23 (0.81) 1.5 (0.42) 0.94 (0.34) 0.1 (0.29)
Medium Low 1.25 0.00 fixed 0.35 2 no no Light P* varied (0.7) 1.06 (0.47) 0 (1.49) -0.3 (2.17) -0.43 (3.45) 0.8 (0.27) 0.23 (0.74) 1.36 (0.59) 0.8 (0.63) 0.14 (0.25)
Medium Low 0.77 0.44 fixed 0.35 2 no no Light P* varied (0.7) 1.12 (0.29) 0 (2.65) -0.26 (1.09) -0.39 (1.06) 0.82 (0.25) 0.23 (0.81) 1.5 (0.42) 0.94 (0.34) 0.1 (0.29)
Medium Low 1.25 0.44 fixed 0.35 2 no no Light P* varied (0.7) 1.06 (0.47) 0 (1.49) -0.3 (2.17) -0.43 (3.45) 0.8 (0.27) 0.23 (0.74) 1.36 (0.59) 0.8 (0.63) 0.14 (0.25)
Medium Low 0.77 0.44 fixed 0.35 2 yes yes Light P* varied (0.7) 1.12 (0.22) 0 (3.7) -0.22 (1.02) -0.33 (0.91) 0.83 (0.23) 0.22 (0.84) 1.07 (0.39) 0.72 (0.26) 0.09 (0.3)
Medium Low 1.25 0.44 fixed 0.35 2 yes yes Light P* varied (0.7) 1.05 (0.3) 0 (2.86) -0.24 (1.27) -0.37 (1.34) 0.81 (0.24) 0.2 (0.82) 0.7 (0.45) 0.43 (0.38) 0.1 (0.28)
Medium Low 0.77 0.44 fixed 0.35 5 yes yes Light P* varied (0.7) 1.13 (0.24) 0 (2.37) -0.22 (1.06) -0.37 (0.92) 0.86 (0.31) 0.27 (0.72) 1.11 (0.41) 0.74 (0.31) 0.06 (0.44)
Medium Low 1.25 0.44 fixed 0.35 5 yes yes Light P* varied (0.7) 1.05 (0.33) 0 (1.86) -0.25 (1.3) -0.44 (1.31) 0.86 (0.34) 0.27 (0.65) 0.76 (0.47) 0.41 (0.47) 0.07 (0.41)
Medium Low 0.77 0.44 fixed 0.35 2 yes yes Light P* varied (0.7) 1.1 (0.22) 0 (3.45) -0.23 (0.97) -0.34 (0.87) 0.85 (0.22) 0.23 (0.75) 1.11 (0.39) 0.72 (0.26) 0.12 (0.24)
Medium Low 1.25 0.44 fixed 0.35 2 yes yes Light P* varied (0.7) 1.04 (0.3) 0 (2.63) -0.26 (1.2) -0.38 (1.28) 0.84 (0.23) 0.23 (0.73) 0.72 (0.45) 0.43 (0.39) 0.15 (0.23)
Medium Low 0.77 0.44 fixed 0.35 5 yes yes Light P* varied (0.7) 1.15 (0.24) 0 (2.57) -0.18 (1.24) -0.36 (0.99) 0.83 (0.34) 0.23 (0.74) 1.01 (0.41) 0.73 (0.31) 0.1 (0.31)
Medium Low 1.25 0.44 fixed 0.35 5 yes yes Light P* varied (0.7) 1.07 (0.34) 0 (2) -0.21 (1.55) -0.41 (1.4) 0.83 (0.38) 0.23 (0.69) 0.68 (0.46) 0.42 (0.48) 0.12 (0.29)
Medium Low 0.77 0.44 fixed 0.35 2 yes yes Light P* varied (0.7) 1.12 (0.25) 0 (3.02) -0.16 (1.29) -0.39 (0.93) 0.85 (0.4) 0.27 (0.83) 0.94 (0.32) 0.71 (0.31) 0.05 (0.41)
Medium Low 1.25 0.44 fixed 0.35 2 yes yes Light P* varied (0.7) 1 (0.4) 0 (2.14) -0.19 (1.74) -0.44 (1.33) 0.84 (0.69) 0.27 (0.78) 0.62 (0.39) 0.41 (0.48) 0.06 (0.38)
Medium Low 0.77 0.44 fixed 0.35 5 yes yes Light P* varied (0.7) 0.99 (0.51) 0 (1.98) -0.13 (1.51) -0.4 (1.03) 0.9 (0.99) 0.33 (0.83) 0.91 (0.31) 0.64 (0.48) 0.03 (0.63)
Medium Low 1.25 0.44 fixed 0.35 5 yes yes Light P* varied (0.7) 0.81 (0.73) 0 (1.39) -0.16 (2.09) -0.45 (1.47) 0.98 (0.96) 0.4 (0.73) 0.6 (0.38) 0.35 (0.7) 0.04 (0.61)
Medium Low 0.77 0.44 fixed 0.35 2 yes yes Light P* varied (0.7) 1.11 (0.26) 0 (2.87) -0.17 (1.2) -0.42 (0.86) 0.88 (0.43) 0.3 (0.71) 0.97 (0.32) 0.72 (0.33) 0.07 (0.37)
Medium Low 1.25 0.44 fixed 0.35 2 yes yes Light P* varied (0.7) 0.99 (0.42) 0 (1.88) -0.2 (1.61) -0.47 (1.22) 0.9 (0.81) 0.33 (0.68) 0.65 (0.4) 0.4 (0.51) 0.09 (0.34)
Medium Low 0.77 0.44 fixed 0.35 5 yes yes Light P* varied (0.7) 0.93 (0.56) 0 (1.76) -0.11 (1.8) -0.39 (1.03) 0.93 (0.97) 0.4 (0.77) 0.86 (0.29) 0.62 (0.52) 0.05 (0.48)
Medium Low 1.25 0.44 fixed 0.35 5 yes yes Light P* varied (0.7) 0.75 (0.8) 0 (1.29) -0.14 (2.52) -0.44 (1.47) 1.02 (0.91) 0.43 (0.68) 0.57 (0.37) 0.34 (0.75) 0.06 (0.47)
Medium Low 0.77 0.00 fixed 0.35 2 no no Moderate P* varied (0.7) 1.13 (0.28) 0 (4.78) 0.02 (8.02) 0.09 (3.67) 0.77 (0.17) 0.13 (0.98) 0.94 (0.39) 0.91 (0.35) 0.09 (0.25)
Medium Low 1.25 0.00 fixed 0.35 2 no no Moderate P* varied (0.7) 1.06 (0.45) 0 (1.85) -0.02 (5.62) 0.08 (3.16) 0.75 (0.19) 0.17 (0.88) 0.8 (0.65) 0.76 (0.62) 0.13 (0.26)
Medium Low 0.77 0.44 fixed 0.35 2 no no Moderate P* varied (0.7) 1.13 (0.28) 0 (4.78) 0.02 (8.02) 0.09 (3.67) 0.77 (0.17) 0.13 (0.98) 0.94 (0.39) 0.91 (0.35) 0.09 (0.25)
Medium Low 1.25 0.44 fixed 0.35 2 no no Moderate P* varied (0.7) 1.06 (0.45) 0 (1.85) -0.02 (5.62) 0.08 (3.16) 0.75 (0.19) 0.17 (0.88) 0.8 (0.65) 0.76 (0.62) 0.13 (0.26)
Medium Low 0.77 0.44 fixed 0.35 2 yes yes Moderate P* varied (0.7) 1.16 (0.23) 0 (8.35) 0.07 (3.02) 0.13 (1.95) 0.79 (0.18) 0.13 (0.98) 0.67 (0.33) 0.72 (0.27) 0.08 (0.25)
Medium Low 1.25 0.44 fixed 0.35 2 yes yes Moderate P* varied (0.7) 1.1 (0.32) 0 (3.65) 0.04 (4.17) 0.12 (2.64) 0.76 (0.18) 0.13 (1) 0.4 (0.45) 0.43 (0.41) 0.09 (0.25)
Medium Low 0.77 0.44 fixed 0.35 5 yes yes Moderate P* varied (0.7) 1.15 (0.26) 0 (5) 0.05 (3.62) 0.15 (2.05) 0.79 (0.2) 0.17 (0.86) 0.67 (0.38) 0.73 (0.34) 0.06 (0.34)
Medium Low 1.25 0.44 fixed 0.35 5 yes yes Moderate P* varied (0.7) 1.1 (0.37) 0 (2.18) 0.03 (5.16) 0.15 (2.82) 0.78 (0.22) 0.2 (0.8) 0.4 (0.49) 0.41 (0.51) 0.07 (0.35)
Medium Low 0.77 0.44 fixed 0.35 2 yes yes Moderate P* varied (0.7) 1.14 (0.23) 0 (7.65) 0.07 (3.19) 0.13 (2.06) 0.8 (0.17) 0.17 (0.88) 0.67 (0.33) 0.73 (0.28) 0.1 (0.22)
Medium Low 1.25 0.44 fixed 0.35 2 yes yes Moderate P* varied (0.7) 1.1 (0.32) 0 (3.21) 0.04 (4.49) 0.13 (2.81) 0.78 (0.18) 0.13 (0.88) 0.4 (0.45) 0.42 (0.42) 0.13 (0.23)
Medium Low 0.77 0.44 fixed 0.35 5 yes yes Moderate P* varied (0.7) 1.18 (0.26) 0 (5.5) 0.06 (3.24) 0.18 (1.91) 0.77 (0.21) 0.17 (0.9) 0.66 (0.36) 0.72 (0.33) 0.08 (0.26)
Medium Low 1.25 0.44 fixed 0.35 5 yes yes Moderate P* varied (0.7) 1.11 (0.36) 0 (2.32) 0.04 (4.55) 0.18 (2.59) 0.77 (0.23) 0.17 (0.84) 0.4 (0.48) 0.41 (0.49) 0.09 (0.27)
Medium Low 0.77 0.44 fixed 0.35 2 yes yes Moderate P* varied (0.7) 1.14 (0.26) 0 (5.49) 0.02 (6.15) 0.14 (2.12) 0.81 (0.19) 0.2 (0.92) 0.72 (0.26) 0.72 (0.27) 0.05 (0.29)
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Medium Low 1.25 0.44 fixed 0.35 2 yes yes Moderate P* varied (0.7) 1.09 (0.37) 0 (2.39) -0.01 (10.89) 0.14 (2.97) 0.8 (0.2) 0.2 (0.86) 0.45 (0.38) 0.41 (0.43) 0.06 (0.3)
Medium Low 0.77 0.44 fixed 0.35 5 yes yes Moderate P* varied (0.7) 1.16 (0.33) 0 (3.17) 0 (12.09) 0.1 (3.35) 0.84 (0.5) 0.23 (0.88) 0.75 (0.25) 0.71 (0.3) 0.03 (0.36)
Medium Low 1.25 0.44 fixed 0.35 5 yes yes Moderate P* varied (0.7) 1.03 (0.56) 0 (1.84) -0.04 (35.14) 0.05 (5.46) 0.88 (0.94) 0.32 (0.84) 0.46 (0.38) 0.38 (0.54) 0.04 (0.45)
Medium Low 0.77 0.44 fixed 0.35 2 yes yes Moderate P* varied (0.7) 1.12 (0.26) 0 (4.49) 0.03 (6.61) 0.13 (2.25) 0.83 (0.18) 0.2 (0.84) 0.73 (0.26) 0.73 (0.28) 0.06 (0.27)
Medium Low 1.25 0.44 fixed 0.35 2 yes yes Moderate P* varied (0.7) 1.07 (0.39) 0 (2.17) -0.01 (12.26) 0.12 (3.24) 0.83 (0.22) 0.23 (0.77) 0.45 (0.38) 0.42 (0.45) 0.08 (0.28)
Medium Low 0.77 0.44 fixed 0.35 5 yes yes Moderate P* varied (0.7) 1.15 (0.34) 0 (3.01) 0 (10.45) 0.12 (3.33) 0.85 (0.5) 0.25 (0.87) 0.74 (0.25) 0.71 (0.31) 0.04 (0.3)
Medium Low 1.25 0.44 fixed 0.35 5 yes yes Moderate P* varied (0.7) 1.03 (0.57) 0 (1.81) -0.03 (25.74) 0.05 (5.42) 0.89 (0.94) 0.3 (0.83) 0.46 (0.38) 0.39 (0.54) 0.05 (0.39)
Medium Low 0.77 0.00 fixed 0.35 2 no no Heavy P* varied (0.7) 1.31 (0.28) 0 (1.38) 0.72 (0.65) 1.27 (0.76) 0.73 (0.19) 0.07 (1.12) 0.34 (0.53) 0.96 (0.36) 0.09 (0.24)
Medium Low 1.25 0.00 fixed 0.35 2 no no Heavy P* varied (0.7) 1.34 (0.47) 0.07 (1.16) 0.66 (1.1) 1.26 (1.21) 0.7 (0.21) 0.1 (1.01) 0.27 (0.99) 0.85 (0.93) 0.13 (0.24)
Medium Low 0.77 0.44 fixed 0.35 2 no no Heavy P* varied (0.7) 1.31 (0.28) 0 (1.38) 0.72 (0.65) 1.27 (0.76) 0.73 (0.19) 0.07 (1.12) 0.34 (0.53) 0.96 (0.36) 0.09 (0.24)
Medium Low 1.25 0.44 fixed 0.35 2 no no Heavy P* varied (0.7) 1.34 (0.47) 0.07 (1.16) 0.66 (1.1) 1.26 (1.21) 0.7 (0.21) 0.1 (1.01) 0.27 (0.99) 0.85 (0.93) 0.13 (0.24)
Medium Low 0.77 0.44 fixed 0.35 2 yes yes Heavy P* varied (0.7) 1.27 (0.22) 0.03 (0.95) 0.79 (0.41) 1.6 (0.51) 0.71 (0.18) 0.07 (1.21) 0.21 (0.42) 0.72 (0.24) 0.08 (0.22)
Medium Low 1.25 0.44 fixed 0.35 2 yes yes Heavy P* varied (0.7) 1.24 (0.31) 0.07 (1.02) 0.72 (0.63) 1.7 (0.72) 0.69 (0.19) 0.07 (1.25) 0.1 (0.66) 0.41 (0.39) 0.09 (0.23)
Medium Low 0.77 0.44 fixed 0.35 5 yes yes Heavy P* varied (0.7) 1.26 (0.24) 0.03 (0.99) 0.84 (0.43) 1.78 (0.5) 0.69 (0.21) 0.07 (1.21) 0.2 (0.46) 0.74 (0.29) 0.06 (0.26)
Medium Low 1.25 0.44 fixed 0.35 5 yes yes Heavy P* varied (0.7) 1.26 (0.34) 0.07 (0.98) 0.75 (0.66) 1.86 (0.73) 0.66 (0.23) 0.07 (1.16) 0.1 (0.67) 0.43 (0.44) 0.07 (0.28)
Medium Low 0.77 0.44 fixed 0.35 2 yes yes Heavy P* varied (0.7) 1.25 (0.22) 0.03 (0.94) 0.81 (0.4) 1.61 (0.51) 0.71 (0.18) 0.07 (1.14) 0.2 (0.42) 0.73 (0.24) 0.1 (0.2)
Medium Low 1.25 0.44 fixed 0.35 2 yes yes Heavy P* varied (0.7) 1.23 (0.32) 0.07 (1.01) 0.74 (0.62) 1.68 (0.74) 0.69 (0.18) 0.07 (1.15) 0.1 (0.66) 0.41 (0.39) 0.13 (0.23)
Medium Low 0.77 0.44 fixed 0.35 5 yes yes Heavy P* varied (0.7) 1.28 (0.25) 0.03 (1.04) 0.76 (0.47) 1.85 (0.48) 0.68 (0.22) 0.07 (1.25) 0.23 (0.43) 0.74 (0.28) 0.09 (0.22)
Medium Low 1.25 0.44 fixed 0.35 5 yes yes Heavy P* varied (0.7) 1.29 (0.34) 0.07 (0.99) 0.67 (0.71) 1.95 (0.71) 0.65 (0.25) 0.07 (1.19) 0.11 (0.65) 0.43 (0.43) 0.1 (0.25)
Medium Low 0.77 0.44 fixed 0.35 2 yes yes Heavy P* varied (0.7) 1.29 (0.24) 0.07 (0.97) 0.47 (0.65) 1.74 (0.49) 0.73 (0.18) 0.07 (0.94) 0.36 (0.28) 0.75 (0.24) 0.06 (0.21)
Medium Low 1.25 0.44 fixed 0.35 2 yes yes Heavy P* varied (0.7) 1.29 (0.34) 0.1 (0.9) 0.39 (1.07) 1.75 (0.75) 0.71 (0.2) 0.1 (0.88) 0.19 (0.48) 0.44 (0.39) 0.07 (0.22)
Medium Low 0.77 0.44 fixed 0.35 5 yes yes Heavy P* varied (0.7) 1.46 (0.25) 0.07 (1.1) 0.37 (0.85) 1.74 (0.55) 0.71 (0.21) 0.17 (0.79) 0.41 (0.27) 0.76 (0.23) 0.04 (0.26)
Medium Low 1.25 0.44 fixed 0.35 5 yes yes Heavy P* varied (0.7) 1.44 (0.39) 0.13 (1) 0.3 (1.45) 1.53 (0.92) 0.71 (0.78) 0.17 (0.85) 0.22 (0.46) 0.41 (0.42) 0.05 (0.34)
Medium Low 0.77 0.44 fixed 0.35 2 yes yes Heavy P* varied (0.7) 1.27 (0.25) 0.07 (0.96) 0.49 (0.63) 1.77 (0.5) 0.74 (0.18) 0.1 (0.89) 0.35 (0.28) 0.76 (0.25) 0.07 (0.21)
Medium Low 1.25 0.44 fixed 0.35 2 yes yes Heavy P* varied (0.7) 1.27 (0.36) 0.1 (0.9) 0.4 (1.05) 1.76 (0.75) 0.73 (0.2) 0.1 (0.84) 0.19 (0.47) 0.44 (0.4) 0.08 (0.22)
Medium Low 0.77 0.44 fixed 0.35 5 yes yes Heavy P* varied (0.7) 1.48 (0.25) 0.07 (1.11) 0.33 (0.94) 1.76 (0.55) 0.71 (0.26) 0.17 (0.68) 0.43 (0.27) 0.77 (0.23) 0.05 (0.22)
Medium Low 1.25 0.44 fixed 0.35 5 yes yes Heavy P* varied (0.7) 1.48 (0.39) 0.13 (1) 0.25 (1.62) 1.52 (0.93) 0.71 (0.85) 0.17 (0.79) 0.23 (0.46) 0.41 (0.43) 0.06 (0.3)
Medium Low 0.77 0.00 fixed 0.35 2 no no Light P* varied (1.0) 1.18 (0.28) 0 (3.07) -0.24 (1.19) -0.36 (1.23) 0.78 (0.24) 0.17 (0.92) 1.43 (0.42) 0.94 (0.34) 0.1 (0.3)
Medium Low 1.25 0.00 fixed 0.35 2 no no Light P* varied (1.0) 1.12 (0.45) 0 (1.8) -0.28 (2.47) -0.4 (4.47) 0.75 (0.27) 0.17 (0.84) 1.3 (0.59) 0.81 (0.62) 0.13 (0.25)
Medium Low 0.77 0.44 fixed 0.35 2 no no Light P* varied (1.0) 1.18 (0.28) 0 (3.07) -0.24 (1.19) -0.36 (1.23) 0.78 (0.24) 0.17 (0.92) 1.43 (0.42) 0.94 (0.34) 0.1 (0.3)
Medium Low 1.25 0.44 fixed 0.35 2 no no Light P* varied (1.0) 1.12 (0.45) 0 (1.8) -0.28 (2.47) -0.4 (4.47) 0.75 (0.27) 0.17 (0.84) 1.3 (0.59) 0.81 (0.62) 0.13 (0.25)
Medium Low 0.77 0.00 fixed 0.35 2 no no Moderate P* varied (1.0) 1.18 (0.28) 0 (5.75) 0.04 (4.46) 0.14 (2.62) 0.73 (0.17) 0.07 (1.14) 0.89 (0.4) 0.9 (0.34) 0.09 (0.26)
Medium Low 1.25 0.00 fixed 0.35 2 no no Moderate P* varied (1.0) 1.11 (0.44) 0 (2.1) 0.01 (4.38) 0.14 (2.69) 0.7 (0.19) 0.1 (1.04) 0.76 (0.66) 0.76 (0.61) 0.13 (0.26)
Medium Low 0.77 0.44 fixed 0.35 2 no no Moderate P* varied (1.0) 1.18 (0.28) 0 (5.75) 0.04 (4.46) 0.14 (2.62) 0.73 (0.17) 0.07 (1.14) 0.89 (0.4) 0.9 (0.34) 0.09 (0.26)
Medium Low 1.25 0.44 fixed 0.35 2 no no Moderate P* varied (1.0) 1.11 (0.44) 0 (2.1) 0.01 (4.38) 0.14 (2.69) 0.7 (0.19) 0.1 (1.04) 0.76 (0.66) 0.76 (0.61) 0.13 (0.26)
Medium Low 0.77 0.00 fixed 0.35 2 no no Heavy P* varied (1.0) 1.37 (0.27) 0 (1.38) 0.81 (0.6) 1.38 (0.72) 0.68 (0.19) 0.03 (1.36) 0.29 (0.57) 0.96 (0.36) 0.09 (0.24)
Medium Low 1.25 0.00 fixed 0.35 2 no no Heavy P* varied (1.0) 1.43 (0.46) 0.07 (1.21) 0.75 (1.02) 1.4 (1.16) 0.65 (0.21) 0.07 (1.22) 0.22 (1.08) 0.84 (0.92) 0.13 (0.24)
Medium Low 0.77 0.44 fixed 0.35 2 no no Heavy P* varied (1.0) 1.37 (0.27) 0 (1.38) 0.81 (0.6) 1.38 (0.72) 0.68 (0.19) 0.03 (1.36) 0.29 (0.57) 0.96 (0.36) 0.09 (0.24)
Medium Low 1.25 0.44 fixed 0.35 2 no no Heavy P* varied (1.0) 1.43 (0.46) 0.07 (1.21) 0.75 (1.02) 1.4 (1.16) 0.65 (0.21) 0.07 (1.22) 0.22 (1.08) 0.84 (0.92) 0.13 (0.24)
Medium Low 0.77 0.00 fixed 0.35 2 no no Light P* fixed (0.38) 1 (0.34) 0 (2.02) -0.3 (0.97) -0.47 (0.85) 0.96 (0.29) 0.33 (0.69) 1.6 (0.42) 0.92 (0.33) 0.1 (0.29)
Medium Low 1.25 0.00 fixed 0.35 2 no no Light P* fixed (0.38) 0.9 (0.55) 0.07 (1.23) -0.34 (1.84) -0.51 (2.29) 0.96 (0.33) 0.37 (0.61) 1.45 (0.59) 0.77 (0.63) 0.13 (0.26)
Medium Low 0.77 0.44 fixed 0.35 2 no no Light P* fixed (0.38) 1 (0.34) 0 (2.02) -0.3 (0.97) -0.47 (0.85) 0.96 (0.29) 0.33 (0.69) 1.6 (0.42) 0.92 (0.33) 0.1 (0.29)
Medium Low 1.25 0.44 fixed 0.35 2 no no Light P* fixed (0.38) 0.9 (0.55) 0.07 (1.23) -0.34 (1.84) -0.51 (2.29) 0.96 (0.33) 0.37 (0.61) 1.45 (0.59) 0.77 (0.63) 0.13 (0.26)
Medium Low 0.77 0.44 fixed 0.35 2 yes yes Light P* fixed (0.38) 1 (0.25) 0 (2.85) -0.25 (0.91) -0.41 (0.75) 0.95 (0.27) 0.33 (0.73) 1.14 (0.38) 0.71 (0.25) 0.08 (0.29)
Medium Low 1.25 0.44 fixed 0.35 2 yes yes Light P* fixed (0.38) 0.91 (0.35) 0 (2.06) -0.27 (1.1) -0.46 (1.03) 0.96 (0.28) 0.33 (0.7) 0.75 (0.45) 0.42 (0.38) 0.09 (0.29)
Medium Low 0.77 0.44 fixed 0.35 5 yes yes Light P* fixed (0.38) 1 (0.28) 0 (1.98) -0.26 (0.94) -0.45 (0.76) 0.99 (0.38) 0.37 (0.62) 1.19 (0.4) 0.7 (0.32) 0.06 (0.46)
Medium Low 1.25 0.44 fixed 0.35 5 yes yes Light P* fixed (0.38) 0.85 (0.45) 0 (1.49) -0.29 (1.14) -0.52 (1.01) 1.02 (0.49) 0.4 (0.57) 0.81 (0.46) 0.39 (0.52) 0.07 (0.44)
Medium Low 0.77 0.44 fixed 0.35 2 yes yes Light P* fixed (0.38) 1 (0.25) 0 (2.74) -0.27 (0.87) -0.42 (0.72) 0.97 (0.26) 0.35 (0.65) 1.19 (0.38) 0.72 (0.25) 0.12 (0.25)
Medium Low 1.25 0.44 fixed 0.35 2 yes yes Light P* fixed (0.38) 0.9 (0.35) 0 (1.88) -0.29 (1.05) -0.47 (1) 0.98 (0.26) 0.37 (0.63) 0.77 (0.45) 0.43 (0.38) 0.14 (0.24)
Medium Low 0.77 0.44 fixed 0.35 5 yes yes Light P* fixed (0.38) 0.98 (0.39) 0 (2.04) -0.21 (1.08) -0.43 (0.82) 0.97 (0.76) 0.37 (0.68) 1.08 (0.4) 0.68 (0.41) 0.1 (0.38)
Medium Low 1.25 0.44 fixed 0.35 5 yes yes Light P* fixed (0.38) 0.84 (0.57) 0 (1.55) -0.24 (1.33) -0.49 (1.08) 1.01 (0.93) 0.4 (0.65) 0.72 (0.46) 0.39 (0.6) 0.12 (0.35)
Medium Low 0.77 0.44 fixed 0.35 2 yes yes Light P* fixed (0.38) 0.96 (0.37) 0 (2.32) -0.17 (1.14) -0.45 (0.79) 0.99 (0.82) 0.4 (0.71) 0.99 (0.32) 0.69 (0.36) 0.05 (0.47)
Medium Low 1.25 0.44 fixed 0.35 2 yes yes Light P* fixed (0.38) 0.81 (0.56) 0 (1.47) -0.2 (1.51) -0.52 (1.07) 1.02 (0.95) 0.43 (0.67) 0.65 (0.4) 0.38 (0.55) 0.06 (0.46)
Medium Low 0.77 0.44 fixed 0.35 5 yes yes Light P* fixed (0.38) 0.8 (0.65) 0 (1.5) -0.15 (1.34) -0.45 (0.89) 1.06 (0.91) 0.5 (0.67) 0.95 (0.31) 0.64 (0.54) 0.03 (0.66)
Medium Low 1.25 0.44 fixed 0.35 5 yes yes Light P* fixed (0.38) 0.58 (0.95) 0.13 (1.11) -0.17 (1.83) -0.51 (1.22) 1.25 (0.81) 0.57 (0.58) 0.63 (0.38) 0.33 (0.8) 0.04 (0.63)
Medium Low 0.77 0.44 fixed 0.35 2 yes yes Light P* fixed (0.38) 0.96 (0.38) 0 (2.13) -0.19 (1.07) -0.48 (0.74) 1.01 (0.71) 0.42 (0.61) 1.02 (0.33) 0.68 (0.39) 0.07 (0.44)
Medium Low 1.25 0.44 fixed 0.35 2 yes yes Light P* fixed (0.38) 0.79 (0.57) 0.02 (1.34) -0.22 (1.41) -0.55 (0.99) 1.06 (0.91) 0.47 (0.57) 0.68 (0.4) 0.36 (0.59) 0.08 (0.4)
Medium Low 0.77 0.44 fixed 0.35 5 yes yes Light P* fixed (0.38) 0.75 (0.73) 0 (1.36) -0.12 (1.56) -0.46 (0.88) 1.11 (0.87) 0.53 (0.62) 0.89 (0.3) 0.62 (0.6) 0.05 (0.54)
Medium Low 1.25 0.44 fixed 0.35 5 yes yes Light P* fixed (0.38) 0.46 (1.03) 0.17 (1.02) -0.15 (2.17) -0.53 (1.22) 1.37 (0.77) 0.6 (0.55) 0.59 (0.37) 0.31 (0.86) 0.06 (0.5)
Medium Low 0.77 0.00 fixed 0.35 2 no no Moderate P* fixed (0.38) 1.01 (0.32) 0 (3.09) -0.03 (17.94) -0.04 (41.91) 0.88 (0.19) 0.27 (0.78) 1.03 (0.37) 0.9 (0.34) 0.08 (0.24)
Medium Low 1.25 0.00 fixed 0.35 2 no no Moderate P* fixed (0.38) 0.91 (0.52) 0 (1.44) -0.09 (13.64) -0.06 (5.98) 0.9 (0.22) 0.3 (0.67) 0.9 (0.62) 0.75 (0.61) 0.12 (0.26)
Medium Low 0.77 0.44 fixed 0.35 2 no no Moderate P* fixed (0.38) 1.01 (0.32) 0 (3.09) -0.03 (17.94) -0.04 (41.91) 0.88 (0.19) 0.27 (0.78) 1.03 (0.37) 0.9 (0.34) 0.08 (0.24)
Medium Low 1.25 0.44 fixed 0.35 2 no no Moderate P* fixed (0.38) 0.91 (0.52) 0 (1.44) -0.09 (13.64) -0.06 (5.98) 0.9 (0.22) 0.3 (0.67) 0.9 (0.62) 0.75 (0.61) 0.12 (0.26)
Medium Low 0.77 0.44 fixed 0.35 2 yes yes Moderate P* fixed (0.38) 1.05 (0.25) 0 (5.5) 0.01 (13.03) 0.03 (4.54) 0.89 (0.19) 0.27 (0.77) 0.73 (0.29) 0.72 (0.26) 0.07 (0.24)
Medium Low 1.25 0.44 fixed 0.35 2 yes yes Moderate P* fixed (0.38) 0.96 (0.36) 0 (2.35) -0.03 (53.74) 0 (7.63) 0.9 (0.19) 0.27 (0.76) 0.45 (0.4) 0.41 (0.4) 0.08 (0.25)
Medium Low 0.77 0.44 fixed 0.35 5 yes yes Moderate P* fixed (0.38) 1.05 (0.29) 0 (2.99) 0.01 (21.66) 0.04 (5.68) 0.9 (0.24) 0.3 (0.73) 0.73 (0.33) 0.72 (0.33) 0.05 (0.34)
Medium Low 1.25 0.44 fixed 0.35 5 yes yes Moderate P* fixed (0.38) 0.94 (0.43) 0 (1.81) -0.03 (416.58) -0.02 (11.19) 0.93 (0.3) 0.33 (0.67) 0.46 (0.44) 0.39 (0.51) 0.06 (0.36)
Medium Low 0.77 0.44 fixed 0.35 2 yes yes Moderate P* fixed (0.38) 1.04 (0.25) 0 (5.05) 0.02 (15.44) 0.02 (4.84) 0.9 (0.18) 0.27 (0.72) 0.74 (0.29) 0.73 (0.26) 0.09 (0.21)
Medium Low 1.25 0.44 fixed 0.35 2 yes yes Moderate P* fixed (0.38) 0.96 (0.37) 0 (2.21) -0.03 (135.72) 0 (8.51) 0.91 (0.19) 0.3 (0.68) 0.46 (0.4) 0.42 (0.41) 0.11 (0.23)
Medium Low 0.77 0.44 fixed 0.35 5 yes yes Moderate P* fixed (0.38) 1.05 (0.3) 0 (3.11) 0.01 (14.69) 0.05 (5.42) 0.9 (0.29) 0.3 (0.77) 0.72 (0.32) 0.72 (0.32) 0.07 (0.28)
Medium Low 1.25 0.44 fixed 0.35 5 yes yes Moderate P* fixed (0.38) 0.94 (0.45) 0 (1.86) -0.03 (60.32) 0 (10.16) 0.92 (0.5) 0.33 (0.71) 0.45 (0.43) 0.39 (0.5) 0.08 (0.29)
Medium Low 0.77 0.44 fixed 0.35 2 yes yes Moderate P* fixed (0.38) 1.04 (0.3) 0 (3.64) -0.02 (74.32) 0 (6.03) 0.92 (0.26) 0.33 (0.76) 0.77 (0.24) 0.71 (0.27) 0.04 (0.28)
Medium Low 1.25 0.44 fixed 0.35 2 yes yes Moderate P* fixed (0.38) 0.93 (0.45) 0 (1.85) -0.06 (19.54) -0.03 (12.76) 0.94 (0.43) 0.37 (0.69) 0.48 (0.36) 0.4 (0.45) 0.05 (0.31)
Medium Low 0.77 0.44 fixed 0.35 5 yes yes Moderate P* fixed (0.38) 0.99 (0.46) 0 (2.22) -0.03 (18.37) -0.01 (32.94) 0.98 (0.79) 0.42 (0.74) 0.78 (0.24) 0.7 (0.37) 0.03 (0.45)
Medium Low 1.25 0.44 fixed 0.35 5 yes yes Moderate P* fixed (0.38) 0.8 (0.74) 0.03 (1.31) -0.09 (12.56) -0.09 (38.08) 1.09 (0.89) 0.5 (0.64) 0.49 (0.36) 0.36 (0.65) 0.04 (0.56)
Medium Low 0.77 0.44 fixed 0.35 2 yes yes Moderate P* fixed (0.38) 1.01 (0.3) 0 (3.49) -0.01 (46.81) 0 (6.65) 0.93 (0.25) 0.33 (0.68) 0.77 (0.24) 0.71 (0.28) 0.05 (0.27)
Medium Low 1.25 0.44 fixed 0.35 2 yes yes Moderate P* fixed (0.38) 0.92 (0.47) 0 (1.73) -0.06 (16.99) -0.04 (15.99) 0.96 (0.51) 0.37 (0.61) 0.48 (0.35) 0.4 (0.47) 0.07 (0.3)
Medium Low 0.77 0.44 fixed 0.35 5 yes yes Moderate P* fixed (0.38) 0.98 (0.48) 0 (2.14) -0.02 (22.01) -0.01 (41.44) 0.99 (0.82) 0.4 (0.74) 0.78 (0.24) 0.69 (0.38) 0.03 (0.42)
Medium Low 1.25 0.44 fixed 0.35 5 yes yes Moderate P* fixed (0.38) 0.77 (0.79) 0.03 (1.29) -0.07 (13.95) -0.09 (32.32) 1.12 (0.88) 0.5 (0.65) 0.49 (0.36) 0.36 (0.67) 0.05 (0.48)
Medium Low 0.77 0.00 fixed 0.35 2 no no Heavy P* fixed (0.38) 1.19 (0.31) 0.03 (1.39) 0.44 (0.95) 0.93 (0.88) 0.89 (0.2) 0.23 (0.78) 0.51 (0.4) 0.94 (0.37) 0.08 (0.22)
Medium Low 1.25 0.00 fixed 0.35 2 no no Heavy P* fixed (0.38) 1.2 (0.52) 0.13 (1.02) 0.35 (1.59) 0.85 (1.41) 0.9 (0.22) 0.3 (0.69) 0.41 (0.76) 0.81 (0.91) 0.12 (0.24)
Medium Low 0.77 0.44 fixed 0.35 2 no no Heavy P* fixed (0.38) 1.19 (0.31) 0.03 (1.39) 0.44 (0.95) 0.93 (0.88) 0.89 (0.2) 0.23 (0.78) 0.51 (0.4) 0.94 (0.37) 0.08 (0.22)
Medium Low 1.25 0.44 fixed 0.35 2 no no Heavy P* fixed (0.38) 1.2 (0.52) 0.13 (1.02) 0.35 (1.59) 0.85 (1.41) 0.9 (0.22) 0.3 (0.69) 0.41 (0.76) 0.81 (0.91) 0.12 (0.24)
Medium Low 0.77 0.44 fixed 0.35 2 yes yes Heavy P* fixed (0.38) 1.18 (0.24) 0.03 (1.17) 0.51 (0.6) 1.26 (0.59) 0.87 (0.18) 0.23 (0.87) 0.35 (0.32) 0.71 (0.24) 0.07 (0.22)
Medium Low 1.25 0.44 fixed 0.35 2 yes yes Heavy P* fixed (0.38) 1.13 (0.35) 0.1 (1.13) 0.41 (0.95) 1.15 (0.89) 0.87 (0.18) 0.2 (0.85) 0.19 (0.5) 0.38 (0.41) 0.08 (0.23)
Medium Low 0.77 0.44 fixed 0.35 5 yes yes Heavy P* fixed (0.38) 1.17 (0.26) 0.03 (1.16) 0.54 (0.66) 1.35 (0.59) 0.85 (0.2) 0.2 (0.91) 0.33 (0.36) 0.73 (0.29) 0.05 (0.28)
Medium Low 1.25 0.44 fixed 0.35 5 yes yes Heavy P* fixed (0.38) 1.13 (0.38) 0.1 (1.1) 0.44 (1.04) 1.28 (0.92) 0.85 (0.24) 0.23 (0.82) 0.17 (0.53) 0.4 (0.45) 0.06 (0.31)
Medium Low 0.77 0.44 fixed 0.35 2 yes yes Heavy P* fixed (0.38) 1.17 (0.24) 0.03 (1.13) 0.55 (0.57) 1.28 (0.59) 0.86 (0.17) 0.2 (0.85) 0.34 (0.32) 0.72 (0.24) 0.1 (0.2)
Medium Low 1.25 0.44 fixed 0.35 2 yes yes Heavy P* fixed (0.38) 1.12 (0.35) 0.1 (1.09) 0.46 (0.91) 1.18 (0.89) 0.86 (0.18) 0.22 (0.82) 0.17 (0.5) 0.39 (0.41) 0.12 (0.22)
Medium Low 0.77 0.44 fixed 0.35 5 yes yes Heavy P* fixed (0.38) 1.21 (0.27) 0.07 (1.13) 0.4 (0.85) 1.31 (0.6) 0.87 (0.22) 0.23 (0.77) 0.39 (0.33) 0.73 (0.28) 0.08 (0.21)
Medium Low 1.25 0.44 fixed 0.35 5 yes yes Heavy P* fixed (0.38) 1.15 (0.4) 0.13 (1.06) 0.28 (1.4) 1.12 (0.98) 0.87 (0.5) 0.27 (0.72) 0.21 (0.51) 0.39 (0.45) 0.09 (0.26)
Medium Low 0.77 0.44 fixed 0.35 2 yes yes Heavy P* fixed (0.38) 1.21 (0.26) 0.07 (1.06) 0.29 (1) 1.25 (0.62) 0.89 (0.19) 0.23 (0.73) 0.44 (0.26) 0.74 (0.24) 0.05 (0.23)
Medium Low 1.25 0.44 fixed 0.35 2 yes yes Heavy P* fixed (0.38) 1.15 (0.4) 0.13 (0.97) 0.2 (1.79) 1.06 (1.04) 0.91 (0.55) 0.27 (0.68) 0.24 (0.44) 0.39 (0.43) 0.06 (0.31)
Medium Low 0.77 0.44 fixed 0.35 5 yes yes Heavy P* fixed (0.38) 1.31 (0.3) 0.1 (1.21) 0.22 (1.36) 1.16 (0.79) 0.89 (0.62) 0.27 (0.67) 0.48 (0.26) 0.72 (0.28) 0.03 (0.35)
Medium Low 1.25 0.44 fixed 0.35 5 yes yes Heavy P* fixed (0.38) 1.15 (0.59) 0.2 (0.92) 0.12 (2.61) 0.82 (1.51) 0.97 (1.07) 0.37 (0.68) 0.26 (0.43) 0.34 (0.62) 0.04 (0.61)
Medium Low 0.77 0.44 fixed 0.35 2 yes yes Heavy P* fixed (0.38) 1.21 (0.26) 0.07 (1.02) 0.33 (0.92) 1.33 (0.6) 0.88 (0.18) 0.23 (0.73) 0.42 (0.26) 0.75 (0.25) 0.06 (0.21)
Medium Low 1.25 0.44 fixed 0.35 2 yes yes Heavy P* fixed (0.38) 1.15 (0.4) 0.13 (0.96) 0.23 (1.64) 1.15 (1) 0.9 (0.36) 0.27 (0.66) 0.23 (0.43) 0.4 (0.43) 0.07 (0.27)
Medium Low 0.77 0.44 fixed 0.35 5 yes yes Heavy P* fixed (0.38) 1.35 (0.32) 0.1 (1.15) 0.15 (1.86) 1.1 (0.85) 0.89 (0.82) 0.27 (0.63) 0.51 (0.25) 0.71 (0.31) 0.05 (0.32)
Medium Low 1.25 0.44 fixed 0.35 5 yes yes Heavy P* fixed (0.38) 1.16 (0.64) 0.23 (0.88) 0.07 (4.04) 0.75 (1.68) 0.99 (1.08) 0.37 (0.66) 0.28 (0.43) 0.33 (0.66) 0.05 (0.49)
Medium Low 0.77 0.00 fixed 0.35 2 no no Light P* fixed (0.7) 1.07 (0.32) 0 (2.52) -0.26 (1.08) -0.42 (1) 0.87 (0.28) 0.23 (0.83) 1.5 (0.42) 0.93 (0.32) 0.09 (0.28)
Medium Low 1.25 0.00 fixed 0.35 2 no no Light P* fixed (0.7) 0.98 (0.52) 0 (1.37) -0.31 (2.14) -0.47 (2.9) 0.87 (0.31) 0.28 (0.73) 1.36 (0.59) 0.79 (0.61) 0.13 (0.26)
Medium Low 0.77 0.44 fixed 0.35 2 no no Light P* fixed (0.7) 1.07 (0.32) 0 (2.52) -0.26 (1.08) -0.42 (1) 0.87 (0.28) 0.23 (0.83) 1.5 (0.42) 0.93 (0.32) 0.09 (0.28)
Medium Low 1.25 0.44 fixed 0.35 2 no no Light P* fixed (0.7) 0.98 (0.52) 0 (1.37) -0.31 (2.14) -0.47 (2.9) 0.87 (0.31) 0.28 (0.73) 1.36 (0.59) 0.79 (0.61) 0.13 (0.26)
Medium Low 0.77 0.00 fixed 0.35 2 no no Moderate P* fixed (0.7) 1.09 (0.3) 0 (4.26) 0 (13.64) 0.04 (5.42) 0.81 (0.19) 0.17 (0.97) 0.96 (0.37) 0.91 (0.33) 0.08 (0.24)
Medium Low 1.25 0.00 fixed 0.35 2 no no Moderate P* fixed (0.7) 0.98 (0.5) 0 (1.65) -0.05 (7.59) 0 (4.01) 0.82 (0.2) 0.2 (0.84) 0.85 (0.62) 0.76 (0.6) 0.12 (0.26)
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Life Assessment SPR SA Projec- ABC Exploitation Control Overfished Initial Final Catch
history uncertainty σR φR h target years tions? avg.? history rule S / SMSY probability ΔS5 ΔS15 F / FMSY POF (true) C / MSY C / MSY AAV

Medium Low 0.77 0.44 fixed 0.35 2 no no Moderate P* fixed (0.7) 1.09 (0.3) 0 (4.26) 0 (13.64) 0.04 (5.42) 0.81 (0.19) 0.17 (0.97) 0.96 (0.37) 0.91 (0.33) 0.08 (0.24)
Medium Low 1.25 0.44 fixed 0.35 2 no no Moderate P* fixed (0.7) 0.98 (0.5) 0 (1.65) -0.05 (7.59) 0 (4.01) 0.82 (0.2) 0.2 (0.84) 0.85 (0.62) 0.76 (0.6) 0.12 (0.26)
Medium Low 0.77 0.00 fixed 0.35 2 no no Heavy P* fixed (0.7) 1.28 (0.3) 0.03 (1.43) 0.48 (0.85) 1.09 (0.81) 0.81 (0.19) 0.13 (0.98) 0.48 (0.4) 0.94 (0.36) 0.08 (0.22)
Medium Low 1.25 0.00 fixed 0.35 2 no no Heavy P* fixed (0.7) 1.3 (0.5) 0.1 (1.1) 0.41 (1.45) 1 (1.31) 0.82 (0.2) 0.17 (0.85) 0.39 (0.76) 0.82 (0.9) 0.12 (0.24)
Medium Low 0.77 0.44 fixed 0.35 2 no no Heavy P* fixed (0.7) 1.28 (0.3) 0.03 (1.43) 0.48 (0.85) 1.09 (0.81) 0.81 (0.19) 0.13 (0.98) 0.48 (0.4) 0.94 (0.36) 0.08 (0.22)
Medium Low 1.25 0.44 fixed 0.35 2 no no Heavy P* fixed (0.7) 1.3 (0.5) 0.1 (1.1) 0.41 (1.45) 1 (1.31) 0.82 (0.2) 0.17 (0.85) 0.39 (0.76) 0.82 (0.9) 0.12 (0.24)
Medium Low 0.77 0.00 fixed 0.35 2 no no Light P* fixed (1.0) 1.12 (0.3) 0 (3.02) -0.24 (1.19) -0.39 (1.15) 0.82 (0.27) 0.2 (0.95) 1.43 (0.42) 0.93 (0.31) 0.09 (0.27)
Medium Low 1.25 0.00 fixed 0.35 2 no no Light P* fixed (1.0) 1.03 (0.5) 0 (1.58) -0.28 (2.43) -0.43 (3.6) 0.81 (0.31) 0.2 (0.84) 1.3 (0.59) 0.81 (0.6) 0.12 (0.25)
Medium Low 0.77 0.44 fixed 0.35 2 no no Light P* fixed (1.0) 1.12 (0.3) 0 (3.02) -0.24 (1.19) -0.39 (1.15) 0.82 (0.27) 0.2 (0.95) 1.43 (0.42) 0.93 (0.31) 0.09 (0.27)
Medium Low 1.25 0.44 fixed 0.35 2 no no Light P* fixed (1.0) 1.03 (0.5) 0 (1.58) -0.28 (2.43) -0.43 (3.6) 0.81 (0.31) 0.2 (0.84) 1.3 (0.59) 0.81 (0.6) 0.12 (0.25)
Medium Low 0.77 0.00 fixed 0.35 2 no no Moderate P* fixed (1.0) 1.15 (0.29) 0 (5.21) 0.03 (6) 0.09 (3.37) 0.76 (0.18) 0.08 (1.14) 0.92 (0.37) 0.9 (0.32) 0.08 (0.23)
Medium Low 1.25 0.00 fixed 0.35 2 no no Moderate P* fixed (1.0) 1.04 (0.48) 0 (1.83) -0.02 (5.76) 0.06 (3.28) 0.76 (0.19) 0.13 (1.01) 0.81 (0.62) 0.76 (0.59) 0.11 (0.26)
Medium Low 0.77 0.44 fixed 0.35 2 no no Moderate P* fixed (1.0) 1.15 (0.29) 0 (5.21) 0.03 (6) 0.09 (3.37) 0.76 (0.18) 0.08 (1.14) 0.92 (0.37) 0.9 (0.32) 0.08 (0.23)
Medium Low 1.25 0.44 fixed 0.35 2 no no Moderate P* fixed (1.0) 1.04 (0.48) 0 (1.83) -0.02 (5.76) 0.06 (3.28) 0.76 (0.19) 0.13 (1.01) 0.81 (0.62) 0.76 (0.59) 0.11 (0.26)
Medium Low 0.77 0.00 fixed 0.35 2 no no Heavy P* fixed (1.0) 1.35 (0.29) 0.02 (1.44) 0.52 (0.8) 1.2 (0.77) 0.76 (0.18) 0.07 (1.16) 0.45 (0.4) 0.95 (0.35) 0.08 (0.22)
Medium Low 1.25 0.00 fixed 0.35 2 no no Heavy P* fixed (1.0) 1.36 (0.49) 0.1 (1.14) 0.45 (1.37) 1.13 (1.26) 0.77 (0.2) 0.13 (1.01) 0.37 (0.76) 0.81 (0.89) 0.12 (0.24)
Medium Low 0.77 0.44 fixed 0.35 2 no no Heavy P* fixed (1.0) 1.35 (0.29) 0.02 (1.44) 0.52 (0.8) 1.2 (0.77) 0.76 (0.18) 0.07 (1.16) 0.45 (0.4) 0.95 (0.35) 0.08 (0.22)
Medium Low 1.25 0.44 fixed 0.35 2 no no Heavy P* fixed (1.0) 1.36 (0.49) 0.1 (1.14) 0.45 (1.37) 1.13 (1.26) 0.77 (0.2) 0.13 (1.01) 0.37 (0.76) 0.81 (0.89) 0.12 (0.24)
Medium Low 0.77 0.00 fixed 0.35 2 no no Light 75% of F_lim 1.14 (0.3) 0 (3.18) -0.23 (1.22) -0.38 (1.2) 0.8 (0.27) 0.17 (1) 1.42 (0.42) 0.93 (0.31) 0.09 (0.27)
Medium Low 1.25 0.00 fixed 0.35 2 no no Light 75% of F_lim 1.05 (0.49) 0 (1.65) -0.27 (2.52) -0.42 (3.86) 0.8 (0.3) 0.2 (0.88) 1.29 (0.59) 0.81 (0.59) 0.12 (0.25)
Medium Low 0.77 0.44 fixed 0.35 2 no no Light 75% of F_lim 1.14 (0.3) 0 (3.18) -0.23 (1.22) -0.38 (1.2) 0.8 (0.27) 0.17 (1) 1.42 (0.42) 0.93 (0.31) 0.09 (0.27)
Medium Low 1.25 0.44 fixed 0.35 2 no no Light 75% of F_lim 1.05 (0.49) 0 (1.65) -0.27 (2.52) -0.42 (3.86) 0.8 (0.3) 0.2 (0.88) 1.29 (0.59) 0.81 (0.59) 0.12 (0.25)
Medium Low 0.77 0.00 fixed 0.35 2 no no Moderate 75% of F_lim 1.17 (0.29) 0 (5.41) 0.04 (5.18) 0.11 (3.05) 0.74 (0.18) 0.07 (1.19) 0.91 (0.37) 0.9 (0.32) 0.08 (0.24)
Medium Low 1.25 0.00 fixed 0.35 2 no no Moderate 75% of F_lim 1.06 (0.48) 0 (1.89) -0.01 (5.4) 0.07 (3.13) 0.75 (0.19) 0.13 (1.04) 0.79 (0.62) 0.76 (0.58) 0.11 (0.26)
Medium Low 0.77 0.44 fixed 0.35 2 no no Moderate 75% of F_lim 1.17 (0.29) 0 (5.41) 0.04 (5.18) 0.11 (3.05) 0.74 (0.18) 0.07 (1.19) 0.91 (0.37) 0.9 (0.32) 0.08 (0.24)
Medium Low 1.25 0.44 fixed 0.35 2 no no Moderate 75% of F_lim 1.06 (0.48) 0 (1.89) -0.01 (5.4) 0.07 (3.13) 0.75 (0.19) 0.13 (1.04) 0.79 (0.62) 0.76 (0.58) 0.11 (0.26)
Medium Low 0.77 0.00 fixed 0.35 2 no no Heavy 75% of F_lim 1.37 (0.28) 0 (1.44) 0.53 (0.78) 1.23 (0.76) 0.74 (0.18) 0.07 (1.23) 0.45 (0.4) 0.94 (0.35) 0.08 (0.22)
Medium Low 1.25 0.00 fixed 0.35 2 no no Heavy 75% of F_lim 1.39 (0.49) 0.1 (1.13) 0.46 (1.34) 1.16 (1.24) 0.75 (0.19) 0.1 (1.05) 0.37 (0.76) 0.82 (0.89) 0.11 (0.24)
Medium Low 0.77 0.44 fixed 0.35 2 no no Heavy 75% of F_lim 1.37 (0.28) 0 (1.44) 0.53 (0.78) 1.23 (0.76) 0.74 (0.18) 0.07 (1.23) 0.45 (0.4) 0.94 (0.35) 0.08 (0.22)
Medium Low 1.25 0.44 fixed 0.35 2 no no Heavy 75% of F_lim 1.39 (0.49) 0.1 (1.13) 0.46 (1.34) 1.16 (1.24) 0.75 (0.19) 0.1 (1.05) 0.37 (0.76) 0.82 (0.89) 0.11 (0.24)
Medium High 0.77 0.00 fixed 0.35 2 no no Light OFL 0.96 (0.61) 0.17 (1.08) -0.36 (1.04) -0.58 (0.88) 1.27 (0.6) 0.43 (0.64) 1.78 (0.55) 0.78 (0.54) 0.18 (0.45)
Medium High 1.25 0.00 fixed 0.35 2 no no Light OFL 0.78 (0.8) 0.27 (0.92) -0.39 (1.56) -0.63 (1.83) 1.34 (0.67) 0.45 (0.62) 1.61 (0.69) 0.61 (0.87) 0.2 (0.45)
Medium High 0.77 0.44 fixed 0.35 2 no no Light OFL 0.96 (0.61) 0.17 (1.08) -0.36 (1.04) -0.58 (0.88) 1.27 (0.6) 0.43 (0.64) 1.78 (0.55) 0.78 (0.54) 0.18 (0.45)
Medium High 1.25 0.44 fixed 0.35 2 no no Light OFL 0.78 (0.8) 0.27 (0.92) -0.39 (1.56) -0.63 (1.83) 1.34 (0.67) 0.45 (0.62) 1.61 (0.69) 0.61 (0.87) 0.2 (0.45)
Medium High 0.77 0.44 fixed 0.35 2 yes yes Light OFL 0.97 (0.51) 0.08 (1.26) -0.29 (1.08) -0.49 (0.89) 1.18 (0.64) 0.4 (0.68) 1.25 (0.58) 0.65 (0.48) 0.16 (0.45)
Medium High 1.25 0.44 fixed 0.35 2 yes yes Light OFL 0.82 (0.63) 0.17 (1.1) -0.32 (1.15) -0.56 (1.06) 1.22 (0.68) 0.4 (0.68) 0.83 (0.64) 0.33 (0.65) 0.17 (0.48)
Medium High 0.77 0.44 fixed 0.35 5 yes yes Light OFL 0.89 (0.58) 0.23 (1.03) -0.3 (1.09) -0.55 (0.87) 1.5 (0.66) 0.47 (0.64) 1.29 (0.58) 0.53 (0.63) 0.12 (0.65)
Medium High 1.25 0.44 fixed 0.35 5 yes yes Light OFL 0.68 (0.76) 0.3 (0.95) -0.33 (1.16) -0.65 (1.03) 1.55 (0.73) 0.5 (0.63) 0.84 (0.63) 0.26 (0.85) 0.13 (0.68)
Medium High 0.77 0.44 fixed 0.35 2 yes yes Light OFL 0.96 (0.49) 0.1 (1.25) -0.3 (1.04) -0.5 (0.86) 1.21 (0.59) 0.37 (0.65) 1.33 (0.56) 0.64 (0.46) 0.2 (0.37)
Medium High 1.25 0.44 fixed 0.35 2 yes yes Light OFL 0.81 (0.61) 0.18 (1.06) -0.34 (1.11) -0.57 (1.03) 1.26 (0.62) 0.4 (0.63) 0.86 (0.62) 0.34 (0.63) 0.22 (0.37)
Medium High 0.77 0.44 fixed 0.35 5 yes yes Light OFL 0.76 (0.81) 0.23 (1.04) -0.25 (1.19) -0.55 (0.9) 1.53 (0.82) 0.55 (0.65) 1.17 (0.6) 0.46 (0.85) 0.16 (0.55)
Medium High 1.25 0.44 fixed 0.35 5 yes yes Light OFL 0.55 (0.99) 0.33 (0.94) -0.29 (1.28) -0.65 (1.06) 1.64 (0.86) 0.57 (0.65) 0.78 (0.65) 0.22 (1.04) 0.17 (0.54)
Medium High 0.77 0.44 fixed 0.35 2 yes yes Light OFL 0.67 (0.91) 0.13 (1.1) -0.2 (1.23) -0.57 (0.87) 1.36 (0.9) 0.57 (0.68) 1.06 (0.57) 0.48 (0.88) 0.1 (0.8)
Medium High 1.25 0.44 fixed 0.35 2 yes yes Light OFL 0.43 (1.05) 0.3 (0.95) -0.25 (1.36) -0.65 (1.03) 1.51 (0.86) 0.6 (0.66) 0.7 (0.63) 0.21 (1.04) 0.11 (0.79)
Medium High 0.77 0.44 fixed 0.35 5 yes yes Light OFL 0.26 (1.11) 0.33 (0.99) -0.18 (1.36) -0.57 (0.91) 1.98 (0.8) 0.7 (0.66) 0.99 (0.56) 0.4 (0.96) 0.07 (0.99)
Medium High 1.25 0.44 fixed 0.35 5 yes yes Light OFL 0.03 (1.34) 0.45 (0.85) -0.22 (1.52) -0.72 (1.14) 3.72 (0.73) 0.75 (0.62) 0.67 (0.61) 0.06 (1.23) 0.08 (0.95)
Medium High 0.77 0.44 fixed 0.35 2 yes yes Light OFL 0.66 (0.88) 0.2 (1.06) -0.22 (1.18) -0.6 (0.82) 1.42 (0.87) 0.57 (0.64) 1.1 (0.56) 0.46 (0.87) 0.11 (0.74)
Medium High 1.25 0.44 fixed 0.35 2 yes yes Light OFL 0.41 (1.06) 0.37 (0.9) -0.27 (1.3) -0.71 (0.97) 1.67 (0.84) 0.63 (0.62) 0.73 (0.62) 0.2 (1.07) 0.12 (0.71)
Medium High 0.77 0.44 fixed 0.35 5 yes yes Light OFL 0.1 (1.18) 0.37 (0.94) -0.16 (1.49) -0.59 (0.91) 2.6 (0.76) 0.73 (0.64) 0.94 (0.57) 0.32 (1.01) 0.08 (0.87)
Medium High 1.25 0.44 fixed 0.35 5 yes yes Light OFL 0.02 (1.41) 0.47 (0.83) -0.19 (1.67) -0.71 (1.14) 3.98 (0.69) 0.77 (0.6) 0.64 (0.61) 0.04 (1.29) 0.1 (0.81)
Medium High 0.77 0.00 fixed 0.35 2 no no Moderate OFL 0.94 (0.56) 0.07 (1.32) -0.11 (3.54) -0.23 (4.92) 1.11 (0.58) 0.4 (0.66) 1.1 (0.54) 0.77 (0.55) 0.16 (0.33)
Medium High 1.25 0.00 fixed 0.35 2 no no Moderate OFL 0.78 (0.73) 0.17 (1.01) -0.16 (12.46) -0.27 (2766.64) 1.16 (0.67) 0.43 (0.65) 0.95 (0.78) 0.59 (0.84) 0.18 (0.36)
Medium High 0.77 0.44 fixed 0.35 2 no no Moderate OFL 0.94 (0.56) 0.07 (1.32) -0.11 (3.54) -0.23 (4.92) 1.11 (0.58) 0.4 (0.66) 1.1 (0.54) 0.77 (0.55) 0.16 (0.33)
Medium High 1.25 0.44 fixed 0.35 2 no no Moderate OFL 0.78 (0.73) 0.17 (1.01) -0.16 (12.46) -0.27 (2766.67) 1.16 (0.67) 0.43 (0.65) 0.95 (0.78) 0.59 (0.84) 0.18 (0.36)
Medium High 0.77 0.44 fixed 0.35 2 yes yes Moderate OFL 0.9 (0.52) 0 (1.4) -0.07 (3.47) -0.14 (5.33) 1.15 (0.59) 0.47 (0.62) 0.82 (0.49) 0.62 (0.5) 0.14 (0.35)
Medium High 1.25 0.44 fixed 0.35 2 yes yes Moderate OFL 0.75 (0.65) 0.1 (1.19) -0.11 (3.55) -0.27 (5.09) 1.16 (0.61) 0.47 (0.61) 0.51 (0.57) 0.32 (0.68) 0.15 (0.37)
Medium High 0.77 0.44 fixed 0.35 5 yes yes Moderate OFL 0.86 (0.59) 0.1 (1.16) -0.09 (3.91) -0.23 (4.09) 1.31 (0.64) 0.5 (0.6) 0.81 (0.54) 0.56 (0.63) 0.11 (0.49)
Medium High 1.25 0.44 fixed 0.35 5 yes yes Moderate OFL 0.66 (0.77) 0.2 (1.02) -0.13 (4.05) -0.36 (4.26) 1.42 (0.7) 0.5 (0.6) 0.5 (0.61) 0.26 (0.86) 0.12 (0.51)
Medium High 0.77 0.44 fixed 0.35 2 yes yes Moderate OFL 0.92 (0.49) 0 (1.41) -0.07 (3.48) -0.16 (5.72) 1.13 (0.55) 0.43 (0.6) 0.82 (0.49) 0.62 (0.49) 0.17 (0.33)
Medium High 1.25 0.44 fixed 0.35 2 yes yes Moderate OFL 0.78 (0.62) 0.1 (1.19) -0.11 (3.56) -0.27 (5.39) 1.15 (0.56) 0.43 (0.58) 0.51 (0.57) 0.32 (0.66) 0.18 (0.33)
Medium High 0.77 0.44 fixed 0.35 5 yes yes Moderate OFL 0.79 (0.77) 0.1 (1.15) -0.1 (3.83) -0.24 (3.53) 1.36 (0.85) 0.5 (0.62) 0.81 (0.52) 0.5 (0.76) 0.12 (0.46)
Medium High 1.25 0.44 fixed 0.35 5 yes yes Moderate OFL 0.57 (0.95) 0.23 (1) -0.13 (3.99) -0.33 (3.89) 1.44 (0.86) 0.53 (0.61) 0.5 (0.61) 0.23 (1) 0.14 (0.46)
Medium High 0.77 0.44 fixed 0.35 2 yes yes Moderate OFL 0.74 (0.79) 0.03 (1.28) -0.08 (3.35) -0.2 (3.57) 1.22 (0.91) 0.53 (0.64) 0.82 (0.39) 0.54 (0.72) 0.08 (0.53)
Medium High 1.25 0.44 fixed 0.35 2 yes yes Moderate OFL 0.55 (0.95) 0.18 (1.04) -0.13 (3.57) -0.3 (3.85) 1.29 (0.89) 0.6 (0.61) 0.53 (0.48) 0.25 (0.91) 0.1 (0.52)
Medium High 0.77 0.44 fixed 0.35 5 yes yes Moderate OFL 0.58 (0.97) 0.12 (1.14) -0.09 (3.53) -0.23 (3.26) 1.38 (0.84) 0.67 (0.61) 0.81 (0.38) 0.5 (0.84) 0.06 (0.69)
Medium High 1.25 0.44 fixed 0.35 5 yes yes Moderate OFL 0.18 (1.23) 0.33 (0.9) -0.12 (3.84) -0.31 (3.89) 2.19 (0.75) 0.77 (0.56) 0.52 (0.47) 0.2 (1.09) 0.07 (0.63)
Medium High 0.77 0.44 fixed 0.35 2 yes yes Moderate OFL 0.78 (0.73) 0.03 (1.29) -0.09 (3.37) -0.2 (3.65) 1.21 (0.88) 0.53 (0.62) 0.81 (0.39) 0.55 (0.69) 0.09 (0.51)
Medium High 1.25 0.44 fixed 0.35 2 yes yes Moderate OFL 0.58 (0.93) 0.2 (1.03) -0.11 (3.58) -0.33 (3.9) 1.31 (0.88) 0.58 (0.59) 0.52 (0.47) 0.25 (0.92) 0.11 (0.48)
Medium High 0.77 0.44 fixed 0.35 5 yes yes Moderate OFL 0.54 (1) 0.13 (1.11) -0.09 (3.51) -0.23 (3.24) 1.4 (0.82) 0.67 (0.6) 0.82 (0.37) 0.5 (0.86) 0.06 (0.64)
Medium High 1.25 0.44 fixed 0.35 5 yes yes Moderate OFL 0.14 (1.26) 0.33 (0.89) -0.12 (3.86) -0.32 (3.88) 2.48 (0.74) 0.77 (0.55) 0.52 (0.46) 0.19 (1.1) 0.08 (0.57)
Medium High 0.77 0.00 fixed 0.35 2 no no Heavy OFL 1.04 (0.58) 0.17 (1.03) 0.23 (2) 0.63 (1.53) 1.12 (0.55) 0.43 (0.62) 0.59 (0.53) 0.74 (0.59) 0.16 (0.29)
Medium High 1.25 0.00 fixed 0.35 2 no no Heavy OFL 0.96 (0.77) 0.27 (0.79) 0.18 (2.42) 0.43 (2) 1.15 (0.65) 0.43 (0.62) 0.47 (0.79) 0.62 (1.07) 0.18 (0.32)
Medium High 0.77 0.44 fixed 0.35 2 no no Heavy OFL 1.04 (0.58) 0.17 (1.03) 0.23 (2) 0.63 (1.53) 1.12 (0.55) 0.43 (0.62) 0.59 (0.53) 0.74 (0.59) 0.16 (0.29)
Medium High 1.25 0.44 fixed 0.35 2 no no Heavy OFL 0.96 (0.77) 0.27 (0.79) 0.18 (2.42) 0.43 (2) 1.15 (0.65) 0.43 (0.62) 0.47 (0.79) 0.62 (1.07) 0.18 (0.32)
Medium High 0.77 0.44 fixed 0.35 2 yes yes Heavy OFL 1.08 (0.51) 0.13 (1.07) 0.42 (1.19) 0.96 (1.04) 1.03 (0.58) 0.38 (0.7) 0.38 (0.48) 0.61 (0.45) 0.13 (0.29)
Medium High 1.25 0.44 fixed 0.35 2 yes yes Heavy OFL 0.98 (0.63) 0.17 (0.95) 0.36 (1.64) 0.81 (1.37) 1.04 (0.6) 0.4 (0.69) 0.21 (0.61) 0.33 (0.63) 0.14 (0.3)
Medium High 0.77 0.44 fixed 0.35 5 yes yes Heavy OFL 1.06 (0.56) 0.13 (1.03) 0.46 (1.34) 1.02 (1.07) 1.06 (0.64) 0.4 (0.68) 0.37 (0.55) 0.61 (0.55) 0.09 (0.43)
Medium High 1.25 0.44 fixed 0.35 5 yes yes Heavy OFL 0.94 (0.7) 0.23 (0.89) 0.33 (1.82) 0.76 (1.45) 1.1 (0.69) 0.4 (0.68) 0.2 (0.66) 0.3 (0.72) 0.1 (0.46)
Medium High 0.77 0.44 fixed 0.35 2 yes yes Heavy OFL 1.08 (0.49) 0.1 (1.08) 0.48 (1.06) 1.02 (0.97) 1 (0.55) 0.37 (0.7) 0.36 (0.49) 0.62 (0.44) 0.16 (0.28)
Medium High 1.25 0.44 fixed 0.35 2 yes yes Heavy OFL 1 (0.61) 0.17 (0.96) 0.38 (1.48) 0.85 (1.3) 1 (0.57) 0.37 (0.68) 0.19 (0.62) 0.33 (0.61) 0.18 (0.27)
Medium High 0.77 0.44 fixed 0.35 5 yes yes Heavy OFL 1.04 (0.64) 0.17 (0.96) 0.29 (2.04) 0.85 (1.28) 1.16 (0.85) 0.45 (0.64) 0.44 (0.48) 0.56 (0.61) 0.12 (0.41)
Medium High 1.25 0.44 fixed 0.35 5 yes yes Heavy OFL 0.93 (0.79) 0.27 (0.83) 0.18 (2.93) 0.63 (1.74) 1.18 (0.94) 0.47 (0.65) 0.23 (0.6) 0.29 (0.8) 0.13 (0.41)
Medium High 0.77 0.44 fixed 0.35 2 yes yes Heavy OFL 1.04 (0.62) 0.17 (1.04) 0.25 (1.74) 0.96 (1.14) 1.06 (0.92) 0.43 (0.65) 0.48 (0.33) 0.63 (0.54) 0.08 (0.43)
Medium High 1.25 0.44 fixed 0.35 2 yes yes Heavy OFL 0.95 (0.78) 0.27 (0.83) 0.12 (2.99) 0.67 (1.66) 1.1 (0.96) 0.47 (0.66) 0.26 (0.48) 0.32 (0.75) 0.09 (0.41)
Medium High 0.77 0.44 fixed 0.35 5 yes yes Heavy OFL 1.12 (0.67) 0.17 (1) 0.15 (2.36) 0.8 (1.38) 1.05 (0.98) 0.43 (0.63) 0.5 (0.31) 0.6 (0.61) 0.05 (0.59)
Medium High 1.25 0.44 fixed 0.35 5 yes yes Heavy OFL 0.93 (0.9) 0.33 (0.75) 0.05 (4.71) 0.45 (2.28) 1.25 (0.92) 0.53 (0.59) 0.27 (0.46) 0.27 (0.87) 0.06 (0.59)
Medium High 0.77 0.44 fixed 0.35 2 yes yes Heavy OFL 1.09 (0.59) 0.13 (1.03) 0.27 (1.51) 1.04 (1.03) 1.03 (0.85) 0.4 (0.67) 0.46 (0.33) 0.65 (0.51) 0.09 (0.38)
Medium High 1.25 0.44 fixed 0.35 2 yes yes Heavy OFL 0.98 (0.73) 0.23 (0.85) 0.15 (2.55) 0.78 (1.49) 1.06 (0.94) 0.43 (0.66) 0.25 (0.48) 0.33 (0.71) 0.1 (0.36)
Medium High 0.77 0.44 fixed 0.35 5 yes yes Heavy OFL 1.16 (0.69) 0.2 (0.95) 0.07 (4.24) 0.72 (1.53) 1.09 (0.98) 0.45 (0.61) 0.54 (0.3) 0.59 (0.64) 0.06 (0.51)
Medium High 1.25 0.44 fixed 0.35 5 yes yes Heavy OFL 0.81 (0.93) 0.4 (0.72) -0.03 (13.66) 0.31 (2.67) 1.31 (0.9) 0.57 (0.57) 0.29 (0.46) 0.25 (0.92) 0.07 (0.53)
Medium High 0.77 0.00 fixed 0.35 2 no no Light P* var (0.38) 1.13 (0.5) 0.07 (1.24) -0.31 (1.17) -0.47 (1.12) 1.02 (0.54) 0.27 (0.71) 1.64 (0.58) 0.83 (0.51) 0.18 (0.42)
Medium High 1.25 0.00 fixed 0.35 2 no no Light P* var (0.38) 1.04 (0.62) 0.17 (1.05) -0.34 (1.8) -0.5 (2.7) 1.02 (0.53) 0.3 (0.68) 1.49 (0.72) 0.69 (0.77) 0.2 (0.4)
Medium High 0.77 0.44 fixed 0.35 2 no no Light P* var (0.38) 1.13 (0.5) 0.07 (1.24) -0.31 (1.17) -0.47 (1.12) 1.02 (0.54) 0.27 (0.71) 1.64 (0.58) 0.83 (0.51) 0.18 (0.42)
Medium High 1.25 0.44 fixed 0.35 2 no no Light P* var (0.38) 1.04 (0.62) 0.17 (1.05) -0.34 (1.8) -0.5 (2.7) 1.02 (0.53) 0.3 (0.68) 1.49 (0.72) 0.69 (0.77) 0.2 (0.4)
Medium High 0.77 0.00 fixed 0.35 2 no no Moderate P* var (0.38) 1.12 (0.48) 0 (1.51) -0.05 (8.66) -0.08 (17.16) 0.91 (0.53) 0.3 (0.74) 0.98 (0.58) 0.83 (0.51) 0.16 (0.31)
Medium High 1.25 0.00 fixed 0.35 2 no no Moderate P* var (0.38) 1 (0.59) 0.1 (1.19) -0.09 (35.11) -0.07 (5.78) 0.89 (0.53) 0.3 (0.72) 0.84 (0.82) 0.66 (0.76) 0.18 (0.33)
Medium High 0.77 0.44 fixed 0.35 2 no no Moderate P* var (0.38) 1.12 (0.48) 0 (1.51) -0.05 (8.66) -0.08 (17.16) 0.91 (0.53) 0.3 (0.74) 0.98 (0.58) 0.83 (0.51) 0.16 (0.31)
Medium High 1.25 0.44 fixed 0.35 2 no no Moderate P* var (0.38) 1 (0.59) 0.1 (1.19) -0.09 (35.11) -0.07 (5.78) 0.89 (0.53) 0.3 (0.72) 0.84 (0.82) 0.66 (0.76) 0.18 (0.33)
Medium High 0.77 0.00 fixed 0.35 2 no no Heavy P* var (0.38) 1.21 (0.49) 0.1 (1.1) 0.49 (1.17) 0.96 (1.11) 0.89 (0.52) 0.27 (0.75) 0.46 (0.64) 0.8 (0.53) 0.16 (0.29)
Medium High 1.25 0.00 fixed 0.35 2 no no Heavy P* var (0.38) 1.18 (0.63) 0.17 (0.92) 0.42 (1.56) 0.81 (1.52) 0.87 (0.52) 0.27 (0.73) 0.35 (0.91) 0.69 (0.96) 0.19 (0.28)
Medium High 0.77 0.44 fixed 0.35 2 no no Heavy P* var (0.38) 1.21 (0.49) 0.1 (1.1) 0.49 (1.17) 0.96 (1.11) 0.89 (0.52) 0.27 (0.75) 0.46 (0.64) 0.8 (0.53) 0.16 (0.29)
Medium High 1.25 0.44 fixed 0.35 2 no no Heavy P* var (0.38) 1.18 (0.63) 0.17 (0.92) 0.42 (1.56) 0.81 (1.52) 0.87 (0.52) 0.27 (0.73) 0.35 (0.91) 0.69 (0.96) 0.19 (0.28)
Medium High 0.77 0.00 fixed 0.35 2 no no Light P* varied (0.7) 1.23 (0.46) 0.03 (1.29) -0.28 (1.28) -0.41 (1.32) 0.92 (0.55) 0.25 (0.77) 1.53 (0.61) 0.82 (0.51) 0.18 (0.41)
Medium High 1.25 0.00 fixed 0.35 2 no no Light P* varied (0.7) 1.15 (0.59) 0.1 (1.16) -0.31 (2.01) -0.45 (3.56) 0.88 (0.55) 0.23 (0.74) 1.39 (0.74) 0.71 (0.76) 0.2 (0.39)
Medium High 0.77 0.44 fixed 0.35 2 no no Light P* varied (0.7) 1.23 (0.46) 0.03 (1.29) -0.28 (1.28) -0.41 (1.32) 0.92 (0.55) 0.25 (0.77) 1.53 (0.61) 0.82 (0.51) 0.18 (0.41)
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Medium High 1.25 0.44 fixed 0.35 2 no no Light P* varied (0.7) 1.15 (0.59) 0.1 (1.16) -0.31 (2.01) -0.45 (3.56) 0.88 (0.55) 0.23 (0.74) 1.39 (0.74) 0.71 (0.76) 0.2 (0.39)
Medium High 0.77 0.44 fixed 0.35 2 yes yes Light P* varied (0.7) 1.2 (0.39) 0 (1.45) -0.22 (1.33) -0.35 (1.32) 0.89 (0.56) 0.27 (0.81) 1.07 (0.64) 0.64 (0.45) 0.16 (0.41)
Medium High 1.25 0.44 fixed 0.35 2 yes yes Light P* varied (0.7) 1.11 (0.45) 0 (1.41) -0.25 (1.44) -0.41 (1.63) 0.89 (0.56) 0.27 (0.8) 0.71 (0.69) 0.38 (0.56) 0.17 (0.41)
Medium High 0.77 0.44 fixed 0.35 5 yes yes Light P* varied (0.7) 1.21 (0.41) 0.03 (1.23) -0.22 (1.34) -0.38 (1.25) 0.98 (0.59) 0.3 (0.75) 1.1 (0.64) 0.61 (0.54) 0.12 (0.59)
Medium High 1.25 0.44 fixed 0.35 5 yes yes Light P* varied (0.7) 1.1 (0.49) 0.1 (1.16) -0.25 (1.45) -0.5 (1.53) 1.01 (0.59) 0.27 (0.73) 0.71 (0.69) 0.35 (0.67) 0.12 (0.6)
Medium High 0.77 0.44 fixed 0.35 2 yes yes Light P* varied (0.7) 1.19 (0.39) 0 (1.44) -0.24 (1.27) -0.36 (1.26) 0.92 (0.55) 0.27 (0.78) 1.14 (0.62) 0.66 (0.45) 0.2 (0.33)
Medium High 1.25 0.44 fixed 0.35 2 yes yes Light P* varied (0.7) 1.09 (0.45) 0.03 (1.37) -0.26 (1.38) -0.43 (1.57) 0.92 (0.54) 0.23 (0.76) 0.74 (0.68) 0.38 (0.55) 0.22 (0.33)
Medium High 0.77 0.44 fixed 0.35 5 yes yes Light P* varied (0.7) 1.22 (0.41) 0 (1.27) -0.17 (1.5) -0.37 (1.32) 0.96 (0.62) 0.3 (0.76) 0.99 (0.66) 0.61 (0.53) 0.15 (0.43)
Medium High 1.25 0.44 fixed 0.35 5 yes yes Light P* varied (0.7) 1.08 (0.5) 0.07 (1.18) -0.23 (1.63) -0.48 (1.61) 0.94 (0.61) 0.3 (0.73) 0.66 (0.71) 0.33 (0.69) 0.17 (0.43)
Medium High 0.77 0.44 fixed 0.35 2 yes yes Light P* varied (0.7) 1.07 (0.64) 0 (1.41) -0.16 (1.49) -0.4 (1.18) 0.95 (0.95) 0.37 (0.82) 0.95 (0.6) 0.54 (0.73) 0.09 (0.81)
Medium High 1.25 0.44 fixed 0.35 2 yes yes Light P* varied (0.7) 0.89 (0.81) 0 (1.28) -0.21 (1.66) -0.48 (1.45) 0.96 (1.04) 0.37 (0.85) 0.62 (0.66) 0.28 (0.89) 0.1 (0.78)
Medium High 0.77 0.44 fixed 0.35 5 yes yes Light P* varied (0.7) 0.89 (0.86) 0 (1.31) -0.14 (1.64) -0.43 (1.21) 1.05 (0.99) 0.5 (0.84) 0.89 (0.58) 0.47 (0.81) 0.06 (1.07)
Medium High 1.25 0.44 fixed 0.35 5 yes yes Light P* varied (0.7) 0.54 (1.03) 0.17 (1.09) -0.18 (1.85) -0.53 (1.53) 1.18 (0.92) 0.52 (0.8) 0.61 (0.63) 0.24 (1) 0.06 (1.02)
Medium High 0.77 0.44 fixed 0.35 2 yes yes Light P* varied (0.7) 1.02 (0.66) 0 (1.36) -0.17 (1.42) -0.44 (1.1) 0.99 (0.92) 0.37 (0.78) 0.98 (0.59) 0.53 (0.76) 0.11 (0.73)
Medium High 1.25 0.44 fixed 0.35 2 yes yes Light P* varied (0.7) 0.84 (0.83) 0.07 (1.21) -0.22 (1.58) -0.53 (1.35) 1.01 (1.01) 0.4 (0.81) 0.65 (0.65) 0.28 (0.92) 0.12 (0.68)
Medium High 0.77 0.44 fixed 0.35 5 yes yes Light P* varied (0.7) 0.81 (0.9) 0 (1.24) -0.12 (1.82) -0.44 (1.21) 1.08 (0.96) 0.5 (0.83) 0.85 (0.59) 0.45 (0.83) 0.07 (0.88)
Medium High 1.25 0.44 fixed 0.35 5 yes yes Light P* varied (0.7) 0.45 (1.07) 0.2 (1.05) -0.15 (2.06) -0.55 (1.54) 1.31 (0.89) 0.53 (0.78) 0.58 (0.64) 0.23 (1.03) 0.08 (0.85)
Medium High 0.77 0.00 fixed 0.35 2 no no Moderate P* varied (0.7) 1.23 (0.45) 0 (1.66) 0.01 (128.75) 0.03 (5.02) 0.81 (0.52) 0.23 (0.82) 0.91 (0.61) 0.85 (0.5) 0.16 (0.3)
Medium High 1.25 0.00 fixed 0.35 2 no no Moderate P* varied (0.7) 1.12 (0.56) 0.03 (1.35) -0.04 (10.23) 0.05 (3.78) 0.78 (0.54) 0.23 (0.81) 0.78 (0.84) 0.67 (0.74) 0.18 (0.32)
Medium High 0.77 0.44 fixed 0.35 2 no no Moderate P* varied (0.7) 1.23 (0.45) 0 (1.66) 0.01 (128.75) 0.03 (5.02) 0.81 (0.52) 0.23 (0.82) 0.91 (0.61) 0.85 (0.5) 0.16 (0.3)
Medium High 1.25 0.44 fixed 0.35 2 no no Moderate P* varied (0.7) 1.12 (0.56) 0.03 (1.35) -0.04 (10.23) 0.05 (3.78) 0.78 (0.54) 0.23 (0.81) 0.78 (0.84) 0.67 (0.74) 0.18 (0.32)
Medium High 0.77 0.44 fixed 0.35 2 yes yes Moderate P* varied (0.7) 1.18 (0.4) 0 (1.77) 0.04 (29.22) 0.08 (3.9) 0.84 (0.54) 0.27 (0.79) 0.68 (0.57) 0.66 (0.46) 0.15 (0.31)
Medium High 1.25 0.44 fixed 0.35 2 yes yes Moderate P* varied (0.7) 1.1 (0.48) 0 (1.63) 0 (49.63) 0 (4.77) 0.82 (0.54) 0.27 (0.8) 0.42 (0.66) 0.36 (0.59) 0.16 (0.31)
Medium High 0.77 0.44 fixed 0.35 5 yes yes Moderate P* varied (0.7) 1.14 (0.43) 0 (1.48) 0.03 (29.98) 0.05 (5.39) 0.9 (0.58) 0.33 (0.76) 0.67 (0.64) 0.64 (0.57) 0.1 (0.42)
Medium High 1.25 0.44 fixed 0.35 5 yes yes Moderate P* varied (0.7) 1.02 (0.53) 0 (1.34) 0 (45.52) -0.04 (6.44) 0.91 (0.58) 0.3 (0.75) 0.4 (0.72) 0.34 (0.72) 0.11 (0.43)
Medium High 0.77 0.44 fixed 0.35 2 yes yes Moderate P* varied (0.7) 1.16 (0.4) 0 (1.75) 0.04 (35.71) 0.07 (4) 0.85 (0.53) 0.27 (0.76) 0.68 (0.57) 0.68 (0.46) 0.17 (0.27)
Medium High 1.25 0.44 fixed 0.35 2 yes yes Moderate P* varied (0.7) 1.08 (0.48) 0 (1.62) 0.01 (63.84) -0.01 (4.96) 0.84 (0.52) 0.27 (0.77) 0.42 (0.65) 0.37 (0.59) 0.19 (0.26)
Medium High 0.77 0.44 fixed 0.35 5 yes yes Moderate P* varied (0.7) 1.14 (0.44) 0 (1.5) 0.03 (21.29) 0.08 (5.06) 0.87 (0.61) 0.3 (0.76) 0.66 (0.63) 0.63 (0.57) 0.12 (0.36)
Medium High 1.25 0.44 fixed 0.35 5 yes yes Moderate P* varied (0.7) 1.03 (0.54) 0 (1.37) -0.01 (27.39) 0 (5.96) 0.89 (0.61) 0.3 (0.76) 0.4 (0.71) 0.33 (0.71) 0.14 (0.35)
Medium High 0.77 0.44 fixed 0.35 2 yes yes Moderate P* varied (0.7) 1.09 (0.52) 0 (1.81) -0.01 (26.27) 0.05 (7.48) 0.88 (0.86) 0.33 (0.81) 0.73 (0.42) 0.59 (0.58) 0.09 (0.45)
Medium High 1.25 0.44 fixed 0.35 2 yes yes Moderate P* varied (0.7) 1.01 (0.64) 0 (1.54) -0.03 (18.69) -0.02 (8.62) 0.87 (1.04) 0.33 (0.85) 0.46 (0.5) 0.32 (0.73) 0.1 (0.43)
Medium High 0.77 0.44 fixed 0.35 5 yes yes Moderate P* varied (0.7) 1.02 (0.7) 0 (1.59) -0.02 (14.08) 0.02 (21.48) 0.93 (1.06) 0.37 (0.86) 0.74 (0.4) 0.56 (0.66) 0.05 (0.64)
Medium High 1.25 0.44 fixed 0.35 5 yes yes Moderate P* varied (0.7) 0.79 (0.88) 0.07 (1.28) -0.06 (12.03) -0.03 (30.86) 1.01 (1) 0.4 (0.8) 0.46 (0.48) 0.28 (0.87) 0.06 (0.6)
Medium High 0.77 0.44 fixed 0.35 2 yes yes Moderate P* varied (0.7) 1.1 (0.51) 0 (1.82) -0.01 (23.48) 0.03 (8.21) 0.9 (0.83) 0.33 (0.77) 0.73 (0.42) 0.6 (0.58) 0.1 (0.42)
Medium High 1.25 0.44 fixed 0.35 2 yes yes Moderate P* varied (0.7) 0.99 (0.65) 0 (1.51) -0.03 (16.74) -0.03 (9.87) 0.89 (1.01) 0.33 (0.79) 0.46 (0.5) 0.33 (0.74) 0.11 (0.4)
Medium High 0.77 0.44 fixed 0.35 5 yes yes Moderate P* varied (0.7) 1.01 (0.71) 0 (1.58) -0.02 (16.86) 0.04 (18.51) 0.94 (1.05) 0.37 (0.85) 0.74 (0.38) 0.57 (0.67) 0.06 (0.61)
Medium High 1.25 0.44 fixed 0.35 5 yes yes Moderate P* varied (0.7) 0.78 (0.89) 0.07 (1.27) -0.06 (13.71) -0.02 (25.25) 1.02 (0.99) 0.4 (0.8) 0.46 (0.47) 0.29 (0.86) 0.07 (0.56)
Medium High 0.77 0.00 fixed 0.35 2 no no Heavy P* varied (0.7) 1.29 (0.46) 0.07 (1.18) 0.62 (0.95) 1.11 (0.99) 0.79 (0.53) 0.23 (0.82) 0.37 (0.72) 0.81 (0.52) 0.16 (0.28)
Medium High 1.25 0.00 fixed 0.35 2 no no Heavy P* varied (0.7) 1.29 (0.6) 0.13 (0.97) 0.54 (1.32) 1.05 (1.39) 0.76 (0.53) 0.2 (0.82) 0.28 (1.01) 0.71 (0.94) 0.18 (0.28)
Medium High 0.77 0.44 fixed 0.35 2 no no Heavy P* varied (0.7) 1.29 (0.46) 0.07 (1.18) 0.62 (0.95) 1.11 (0.99) 0.79 (0.53) 0.23 (0.82) 0.37 (0.72) 0.81 (0.52) 0.16 (0.28)
Medium High 1.25 0.44 fixed 0.35 2 no no Heavy P* varied (0.7) 1.29 (0.6) 0.13 (0.97) 0.54 (1.32) 1.05 (1.39) 0.76 (0.53) 0.2 (0.82) 0.28 (1.01) 0.71 (0.94) 0.18 (0.28)
Medium High 0.77 0.44 fixed 0.35 2 yes yes Heavy P* varied (0.7) 1.28 (0.41) 0.07 (1.13) 0.81 (0.61) 1.5 (0.71) 0.72 (0.54) 0.2 (0.95) 0.21 (0.67) 0.64 (0.42) 0.14 (0.27)
Medium High 1.25 0.44 fixed 0.35 2 yes yes Heavy P* varied (0.7) 1.25 (0.48) 0.1 (1.02) 0.72 (0.81) 1.51 (0.88) 0.7 (0.56) 0.17 (0.97) 0.11 (0.82) 0.36 (0.54) 0.15 (0.27)
Medium High 0.77 0.44 fixed 0.35 5 yes yes Heavy P* varied (0.7) 1.26 (0.44) 0.07 (1.18) 0.81 (0.65) 1.66 (0.7) 0.72 (0.62) 0.17 (0.94) 0.2 (0.77) 0.65 (0.52) 0.09 (0.39)
Medium High 1.25 0.44 fixed 0.35 5 yes yes Heavy P* varied (0.7) 1.23 (0.51) 0.1 (1.01) 0.74 (0.86) 1.73 (0.88) 0.69 (0.62) 0.17 (0.95) 0.1 (0.9) 0.37 (0.62) 0.1 (0.39)
Medium High 0.77 0.44 fixed 0.35 2 yes yes Heavy P* varied (0.7) 1.27 (0.4) 0.07 (1.14) 0.83 (0.59) 1.47 (0.71) 0.73 (0.53) 0.2 (0.92) 0.2 (0.67) 0.65 (0.41) 0.16 (0.23)
Medium High 1.25 0.44 fixed 0.35 2 yes yes Heavy P* varied (0.7) 1.25 (0.48) 0.1 (1.03) 0.73 (0.79) 1.54 (0.89) 0.71 (0.54) 0.17 (0.94) 0.1 (0.83) 0.36 (0.54) 0.18 (0.23)
Medium High 0.77 0.44 fixed 0.35 5 yes yes Heavy P* varied (0.7) 1.3 (0.44) 0.07 (1.14) 0.72 (0.73) 1.7 (0.69) 0.72 (0.64) 0.17 (0.96) 0.23 (0.7) 0.65 (0.5) 0.12 (0.32)
Medium High 1.25 0.44 fixed 0.35 5 yes yes Heavy P* varied (0.7) 1.27 (0.51) 0.13 (0.99) 0.67 (0.94) 1.74 (0.86) 0.68 (0.64) 0.17 (0.97) 0.12 (0.84) 0.36 (0.61) 0.13 (0.34)
Medium High 0.77 0.44 fixed 0.35 2 yes yes Heavy P* varied (0.7) 1.31 (0.46) 0.1 (1.13) 0.45 (0.86) 1.57 (0.69) 0.75 (0.71) 0.2 (0.89) 0.37 (0.36) 0.64 (0.45) 0.08 (0.32)
Medium High 1.25 0.44 fixed 0.35 2 yes yes Heavy P* varied (0.7) 1.28 (0.55) 0.17 (0.93) 0.35 (1.3) 1.49 (0.91) 0.72 (0.89) 0.17 (0.91) 0.2 (0.52) 0.37 (0.58) 0.09 (0.31)
Medium High 0.77 0.44 fixed 0.35 5 yes yes Heavy P* varied (0.7) 1.43 (0.46) 0.1 (1.21) 0.34 (1.08) 1.53 (0.73) 0.74 (1.03) 0.17 (0.91) 0.42 (0.33) 0.65 (0.45) 0.06 (0.41)
Medium High 1.25 0.44 fixed 0.35 5 yes yes Heavy P* varied (0.7) 1.37 (0.58) 0.17 (0.98) 0.24 (1.75) 1.46 (1.1) 0.75 (1.2) 0.2 (0.9) 0.23 (0.49) 0.35 (0.63) 0.06 (0.45)
Medium High 0.77 0.44 fixed 0.35 2 yes yes Heavy P* varied (0.7) 1.29 (0.46) 0.1 (1.11) 0.47 (0.82) 1.57 (0.67) 0.76 (0.7) 0.2 (0.87) 0.36 (0.36) 0.65 (0.45) 0.09 (0.29)
Medium High 1.25 0.44 fixed 0.35 2 yes yes Heavy P* varied (0.7) 1.24 (0.55) 0.17 (0.92) 0.36 (1.25) 1.56 (0.9) 0.74 (0.87) 0.2 (0.89) 0.19 (0.52) 0.37 (0.57) 0.11 (0.29)
Medium High 0.77 0.44 fixed 0.35 5 yes yes Heavy P* varied (0.7) 1.45 (0.45) 0.1 (1.18) 0.31 (1.22) 1.54 (0.73) 0.73 (1.07) 0.2 (0.88) 0.43 (0.32) 0.66 (0.45) 0.06 (0.39)
Medium High 1.25 0.44 fixed 0.35 5 yes yes Heavy P* varied (0.7) 1.39 (0.58) 0.2 (0.96) 0.2 (1.98) 1.46 (1.11) 0.74 (1.21) 0.22 (0.87) 0.23 (0.49) 0.35 (0.63) 0.07 (0.42)
Medium High 0.77 0.00 fixed 0.35 2 no no Light P* varied (1.0) 1.28 (0.44) 0 (1.36) -0.26 (1.37) -0.38 (1.49) 0.85 (0.56) 0.2 (0.82) 1.46 (0.63) 0.82 (0.51) 0.17 (0.41)
Medium High 1.25 0.00 fixed 0.35 2 no no Light P* varied (1.0) 1.21 (0.57) 0.07 (1.22) -0.29 (2.19) -0.43 (4.38) 0.82 (0.57) 0.2 (0.8) 1.33 (0.76) 0.71 (0.75) 0.2 (0.38)
Medium High 0.77 0.44 fixed 0.35 2 no no Light P* varied (1.0) 1.28 (0.44) 0 (1.36) -0.26 (1.37) -0.38 (1.49) 0.85 (0.56) 0.2 (0.82) 1.46 (0.63) 0.82 (0.51) 0.17 (0.41)
Medium High 1.25 0.44 fixed 0.35 2 no no Light P* varied (1.0) 1.21 (0.57) 0.07 (1.22) -0.29 (2.19) -0.43 (4.38) 0.82 (0.57) 0.2 (0.8) 1.33 (0.76) 0.71 (0.75) 0.2 (0.38)
Medium High 0.77 0.00 fixed 0.35 2 no no Moderate P* varied (1.0) 1.26 (0.43) 0 (1.8) 0.03 (14.43) 0.08 (3.43) 0.76 (0.53) 0.2 (0.9) 0.86 (0.63) 0.85 (0.49) 0.15 (0.3)
Medium High 1.25 0.00 fixed 0.35 2 no no Moderate P* varied (1.0) 1.18 (0.54) 0 (1.48) -0.02 (6.86) 0.13 (3.08) 0.73 (0.55) 0.2 (0.88) 0.72 (0.86) 0.67 (0.74) 0.18 (0.31)
Medium High 0.77 0.44 fixed 0.35 2 no no Moderate P* varied (1.0) 1.26 (0.43) 0 (1.8) 0.03 (14.43) 0.08 (3.43) 0.76 (0.53) 0.2 (0.9) 0.86 (0.63) 0.85 (0.49) 0.15 (0.3)
Medium High 1.25 0.44 fixed 0.35 2 no no Moderate P* varied (1.0) 1.18 (0.54) 0 (1.48) -0.02 (6.86) 0.13 (3.08) 0.73 (0.55) 0.2 (0.88) 0.72 (0.86) 0.67 (0.74) 0.18 (0.31)
Medium High 0.77 0.00 fixed 0.35 2 no no Heavy P* varied (1.0) 1.34 (0.44) 0.03 (1.25) 0.7 (0.84) 1.25 (0.92) 0.72 (0.53) 0.2 (0.9) 0.32 (0.78) 0.81 (0.51) 0.16 (0.28)
Medium High 1.25 0.00 fixed 0.35 2 no no Heavy P* varied (1.0) 1.37 (0.58) 0.1 (1) 0.62 (1.2) 1.2 (1.32) 0.7 (0.55) 0.2 (0.89) 0.24 (1.09) 0.72 (0.93) 0.19 (0.27)
Medium High 0.77 0.44 fixed 0.35 2 no no Heavy P* varied (1.0) 1.34 (0.44) 0.03 (1.25) 0.7 (0.84) 1.25 (0.92) 0.72 (0.53) 0.2 (0.9) 0.32 (0.78) 0.81 (0.51) 0.16 (0.28)
Medium High 1.25 0.44 fixed 0.35 2 no no Heavy P* varied (1.0) 1.37 (0.58) 0.1 (1) 0.62 (1.2) 1.2 (1.32) 0.7 (0.55) 0.2 (0.89) 0.24 (1.09) 0.72 (0.93) 0.19 (0.27)
Medium High 0.77 0.00 fixed 0.35 2 no no Light P* fixed (0.38) 1.05 (0.56) 0.1 (1.23) -0.31 (1.16) -0.5 (1.04) 1.09 (0.62) 0.33 (0.73) 1.64 (0.58) 0.8 (0.52) 0.17 (0.45)
Medium High 1.25 0.00 fixed 0.35 2 no no Light P* fixed (0.38) 0.89 (0.74) 0.2 (1.04) -0.34 (1.78) -0.56 (2.33) 1.13 (0.7) 0.37 (0.71) 1.49 (0.72) 0.64 (0.82) 0.19 (0.45)
Medium High 0.77 0.44 fixed 0.35 2 no no Light P* fixed (0.38) 1.05 (0.56) 0.1 (1.23) -0.31 (1.16) -0.5 (1.04) 1.09 (0.62) 0.33 (0.73) 1.64 (0.58) 0.8 (0.52) 0.17 (0.45)
Medium High 1.25 0.44 fixed 0.35 2 no no Light P* fixed (0.38) 0.89 (0.74) 0.2 (1.04) -0.34 (1.78) -0.56 (2.33) 1.13 (0.7) 0.37 (0.71) 1.49 (0.72) 0.64 (0.82) 0.19 (0.45)
Medium High 0.77 0.44 fixed 0.35 2 yes yes Light P* fixed (0.38) 1.06 (0.47) 0 (1.41) -0.25 (1.21) -0.42 (1.05) 1.05 (0.65) 0.33 (0.76) 1.14 (0.61) 0.64 (0.46) 0.15 (0.45)
Medium High 1.25 0.44 fixed 0.35 2 yes yes Light P* fixed (0.38) 0.92 (0.58) 0.1 (1.26) -0.29 (1.29) -0.49 (1.26) 1.07 (0.71) 0.33 (0.77) 0.76 (0.67) 0.34 (0.61) 0.16 (0.48)
Medium High 0.77 0.44 fixed 0.35 5 yes yes Light P* fixed (0.38) 1 (0.53) 0.1 (1.18) -0.25 (1.22) -0.48 (1.02) 1.21 (0.69) 0.37 (0.71) 1.18 (0.61) 0.56 (0.59) 0.11 (0.65)
Medium High 1.25 0.44 fixed 0.35 5 yes yes Light P* fixed (0.38) 0.81 (0.68) 0.18 (1.06) -0.29 (1.31) -0.58 (1.21) 1.28 (0.76) 0.4 (0.7) 0.76 (0.66) 0.28 (0.77) 0.12 (0.68)
Medium High 0.77 0.44 fixed 0.35 2 yes yes Light P* fixed (0.38) 1.06 (0.45) 0 (1.4) -0.27 (1.16) -0.43 (1.01) 1.05 (0.61) 0.33 (0.73) 1.21 (0.6) 0.65 (0.45) 0.19 (0.37)
Medium High 1.25 0.44 fixed 0.35 2 yes yes Light P* fixed (0.38) 0.92 (0.56) 0.1 (1.22) -0.3 (1.24) -0.51 (1.22) 1.08 (0.64) 0.33 (0.73) 0.79 (0.65) 0.35 (0.59) 0.21 (0.37)
Medium High 0.77 0.44 fixed 0.35 5 yes yes Light P* fixed (0.38) 0.88 (0.7) 0.07 (1.19) -0.2 (1.35) -0.47 (1.07) 1.19 (0.89) 0.43 (0.74) 1.06 (0.63) 0.5 (0.74) 0.14 (0.54)
Medium High 1.25 0.44 fixed 0.35 5 yes yes Light P* fixed (0.38) 0.7 (0.89) 0.2 (1.07) -0.25 (1.45) -0.58 (1.26) 1.32 (0.93) 0.45 (0.74) 0.71 (0.68) 0.25 (0.95) 0.16 (0.53)
Medium High 0.77 0.44 fixed 0.35 2 yes yes Light P* fixed (0.38) 0.82 (0.83) 0 (1.25) -0.18 (1.37) -0.49 (1.01) 1.12 (0.98) 0.47 (0.78) 0.99 (0.59) 0.53 (0.81) 0.09 (0.83)
Medium High 1.25 0.44 fixed 0.35 2 yes yes Light P* fixed (0.38) 0.64 (0.97) 0.2 (1.08) -0.23 (1.51) -0.58 (1.21) 1.17 (0.94) 0.5 (0.75) 0.65 (0.65) 0.26 (0.96) 0.1 (0.81)
Medium High 0.77 0.44 fixed 0.35 5 yes yes Light P* fixed (0.38) 0.53 (0.97) 0.13 (1.13) -0.16 (1.51) -0.49 (1.05) 1.36 (0.9) 0.62 (0.76) 0.94 (0.57) 0.48 (0.85) 0.05 (1.06)
Medium High 1.25 0.44 fixed 0.35 5 yes yes Light P* fixed (0.38) 0.21 (1.17) 0.33 (0.95) -0.2 (1.69) -0.61 (1.32) 1.98 (0.82) 0.67 (0.7) 0.63 (0.62) 0.21 (1.07) 0.07 (0.99)
Medium High 0.77 0.44 fixed 0.35 2 yes yes Light P* fixed (0.38) 0.79 (0.81) 0.03 (1.21) -0.19 (1.3) -0.52 (0.94) 1.17 (0.94) 0.47 (0.73) 1.03 (0.58) 0.51 (0.81) 0.1 (0.75)
Medium High 1.25 0.44 fixed 0.35 2 yes yes Light P* fixed (0.38) 0.59 (0.98) 0.22 (1.02) -0.24 (1.44) -0.63 (1.13) 1.29 (0.92) 0.5 (0.71) 0.68 (0.64) 0.25 (0.98) 0.11 (0.71)
Medium High 0.77 0.44 fixed 0.35 5 yes yes Light P* fixed (0.38) 0.43 (1.04) 0.17 (1.08) -0.13 (1.66) -0.51 (1.06) 1.49 (0.85) 0.62 (0.73) 0.88 (0.58) 0.46 (0.89) 0.07 (0.89)
Medium High 1.25 0.44 fixed 0.35 5 yes yes Light P* fixed (0.38) 0.07 (1.25) 0.37 (0.92) -0.17 (1.87) -0.62 (1.32) 2.75 (0.78) 0.67 (0.69) 0.61 (0.63) 0.16 (1.13) 0.08 (0.86)
Medium High 0.77 0.00 fixed 0.35 2 no no Moderate P* fixed (0.38) 1.04 (0.52) 0 (1.5) -0.06 (6.48) -0.13 (24.83) 0.96 (0.59) 0.33 (0.76) 1.01 (0.56) 0.78 (0.52) 0.15 (0.33)
Medium High 1.25 0.00 fixed 0.35 2 no no Moderate P* fixed (0.38) 0.93 (0.67) 0.13 (1.16) -0.11 (448.65) -0.15 (9.93) 0.98 (0.69) 0.33 (0.74) 0.88 (0.79) 0.62 (0.79) 0.17 (0.35)
Medium High 0.77 0.44 fixed 0.35 2 no no Moderate P* fixed (0.38) 1.04 (0.52) 0 (1.5) -0.06 (6.48) -0.13 (24.83) 0.96 (0.59) 0.33 (0.76) 1.01 (0.56) 0.78 (0.52) 0.15 (0.33)
Medium High 1.25 0.44 fixed 0.35 2 no no Moderate P* fixed (0.38) 0.93 (0.67) 0.13 (1.16) -0.11 (448.65) -0.15 (9.93) 0.98 (0.69) 0.33 (0.74) 0.88 (0.79) 0.62 (0.79) 0.17 (0.35)
Medium High 0.77 0.44 fixed 0.35 2 yes yes Moderate P* fixed (0.38) 1.02 (0.47) 0 (1.62) -0.01 (6.92) -0.05 (258.64) 0.99 (0.59) 0.37 (0.72) 0.75 (0.51) 0.64 (0.47) 0.13 (0.34)
Medium High 1.25 0.44 fixed 0.35 2 yes yes Moderate P* fixed (0.38) 0.87 (0.59) 0 (1.39) -0.06 (6.45) -0.14 (27.78) 1 (0.61) 0.37 (0.72) 0.46 (0.59) 0.34 (0.63) 0.14 (0.36)
Medium High 0.77 0.44 fixed 0.35 5 yes yes Moderate P* fixed (0.38) 0.95 (0.54) 0 (1.37) -0.03 (7.99) -0.09 (15.91) 1.09 (0.66) 0.37 (0.69) 0.73 (0.56) 0.59 (0.59) 0.1 (0.48)
Medium High 1.25 0.44 fixed 0.35 5 yes yes Moderate P* fixed (0.38) 0.79 (0.68) 0.1 (1.17) -0.08 (7.6) -0.19 (13.45) 1.18 (0.7) 0.4 (0.69) 0.45 (0.63) 0.3 (0.77) 0.11 (0.49)
Medium High 0.77 0.44 fixed 0.35 2 yes yes Moderate P* fixed (0.38) 1.03 (0.46) 0 (1.63) -0.02 (6.88) -0.06 (169.46) 1 (0.55) 0.37 (0.69) 0.75 (0.5) 0.65 (0.46) 0.16 (0.32)
Medium High 1.25 0.44 fixed 0.35 2 yes yes Moderate P* fixed (0.38) 0.89 (0.57) 0 (1.4) -0.06 (6.38) -0.16 (30.88) 0.99 (0.57) 0.37 (0.69) 0.47 (0.58) 0.34 (0.62) 0.17 (0.31)
Medium High 0.77 0.44 fixed 0.35 5 yes yes Moderate P* fixed (0.38) 0.93 (0.66) 0 (1.36) -0.03 (8.14) -0.08 (11.93) 1.09 (0.91) 0.4 (0.73) 0.74 (0.55) 0.56 (0.66) 0.11 (0.45)
Medium High 1.25 0.44 fixed 0.35 5 yes yes Moderate P* fixed (0.38) 0.77 (0.8) 0.1 (1.19) -0.09 (7.82) -0.17 (11.47) 1.14 (0.94) 0.43 (0.72) 0.46 (0.62) 0.29 (0.86) 0.13 (0.43)
Medium High 0.77 0.44 fixed 0.35 2 yes yes Moderate P* fixed (0.38) 0.91 (0.67) 0 (1.49) -0.04 (5.53) -0.08 (10.35) 1.04 (1) 0.4 (0.74) 0.77 (0.39) 0.58 (0.63) 0.08 (0.52)
Medium High 1.25 0.44 fixed 0.35 2 yes yes Moderate P* fixed (0.38) 0.75 (0.83) 0.1 (1.23) -0.08 (5.47) -0.18 (9.48) 1.1 (0.98) 0.47 (0.72) 0.5 (0.47) 0.29 (0.82) 0.09 (0.5)
Medium High 0.77 0.44 fixed 0.35 5 yes yes Moderate P* fixed (0.38) 0.79 (0.82) 0 (1.35) -0.05 (5.34) -0.1 (6.75) 1.14 (0.94) 0.5 (0.72) 0.78 (0.38) 0.55 (0.73) 0.05 (0.7)
Medium High 1.25 0.44 fixed 0.35 5 yes yes Moderate P* fixed (0.38) 0.47 (1.06) 0.2 (1.05) -0.09 (5.44) -0.17 (7.53) 1.4 (0.86) 0.6 (0.65) 0.5 (0.46) 0.27 (0.96) 0.06 (0.64)
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Medium High 0.77 0.44 fixed 0.35 2 yes yes Moderate P* fixed (0.38) 0.92 (0.64) 0 (1.5) -0.05 (5.49) -0.1 (10.33) 1.06 (0.94) 0.43 (0.71) 0.77 (0.39) 0.59 (0.62) 0.09 (0.49)
Medium High 1.25 0.44 fixed 0.35 2 yes yes Moderate P* fixed (0.38) 0.75 (0.81) 0.13 (1.2) -0.07 (5.39) -0.19 (9.5) 1.12 (0.97) 0.45 (0.68) 0.5 (0.47) 0.29 (0.81) 0.1 (0.47)
Medium High 0.77 0.44 fixed 0.35 5 yes yes Moderate P* fixed (0.38) 0.77 (0.84) 0 (1.33) -0.06 (5.46) -0.09 (6.8) 1.15 (0.93) 0.5 (0.71) 0.78 (0.36) 0.54 (0.74) 0.05 (0.64)
Medium High 1.25 0.44 fixed 0.35 5 yes yes Moderate P* fixed (0.38) 0.45 (1.08) 0.2 (1.04) -0.09 (5.6) -0.17 (7.6) 1.43 (0.84) 0.6 (0.64) 0.49 (0.45) 0.26 (0.96) 0.07 (0.58)
Medium High 0.77 0.00 fixed 0.35 2 no no Heavy P* fixed (0.38) 1.16 (0.53) 0.1 (1.12) 0.3 (1.53) 0.79 (1.27) 0.98 (0.56) 0.33 (0.73) 0.54 (0.54) 0.77 (0.54) 0.15 (0.29)
Medium High 1.25 0.00 fixed 0.35 2 no no Heavy P* fixed (0.38) 1.09 (0.71) 0.23 (0.89) 0.26 (2) 0.68 (1.73) 0.99 (0.61) 0.35 (0.71) 0.43 (0.79) 0.63 (1.01) 0.17 (0.29)
Medium High 0.77 0.44 fixed 0.35 2 no no Heavy P* fixed (0.38) 1.16 (0.53) 0.1 (1.12) 0.3 (1.53) 0.79 (1.27) 0.98 (0.56) 0.33 (0.73) 0.54 (0.54) 0.77 (0.54) 0.15 (0.29)
Medium High 1.25 0.44 fixed 0.35 2 no no Heavy P* fixed (0.38) 1.09 (0.71) 0.23 (0.89) 0.26 (2) 0.68 (1.73) 0.99 (0.61) 0.35 (0.71) 0.43 (0.79) 0.63 (1.01) 0.17 (0.29)
Medium High 0.77 0.44 fixed 0.35 2 yes yes Heavy P* fixed (0.38) 1.18 (0.47) 0.1 (1.13) 0.51 (0.98) 1.18 (0.88) 0.91 (0.58) 0.33 (0.8) 0.35 (0.49) 0.63 (0.42) 0.13 (0.28)
Medium High 1.25 0.44 fixed 0.35 2 yes yes Heavy P* fixed (0.38) 1.1 (0.57) 0.13 (1.01) 0.41 (1.34) 1.01 (1.16) 0.9 (0.61) 0.3 (0.8) 0.19 (0.62) 0.34 (0.58) 0.13 (0.28)
Medium High 0.77 0.44 fixed 0.35 5 yes yes Heavy P* fixed (0.38) 1.16 (0.51) 0.1 (1.11) 0.52 (1.08) 1.25 (0.89) 0.92 (0.66) 0.33 (0.79) 0.33 (0.56) 0.63 (0.51) 0.08 (0.44)
Medium High 1.25 0.44 fixed 0.35 5 yes yes Heavy P* fixed (0.38) 1.09 (0.62) 0.17 (0.96) 0.4 (1.48) 1.01 (1.21) 0.97 (0.7) 0.33 (0.78) 0.18 (0.67) 0.33 (0.66) 0.09 (0.44)
Medium High 0.77 0.44 fixed 0.35 2 yes yes Heavy P* fixed (0.38) 1.17 (0.46) 0.07 (1.16) 0.55 (0.89) 1.21 (0.84) 0.9 (0.55) 0.3 (0.79) 0.33 (0.49) 0.64 (0.41) 0.15 (0.26)
Medium High 1.25 0.44 fixed 0.35 2 yes yes Heavy P* fixed (0.38) 1.1 (0.56) 0.13 (1.02) 0.44 (1.24) 1.06 (1.13) 0.88 (0.57) 0.3 (0.79) 0.18 (0.62) 0.35 (0.57) 0.17 (0.26)
Medium High 0.77 0.44 fixed 0.35 5 yes yes Heavy P* fixed (0.38) 1.19 (0.55) 0.13 (1.08) 0.38 (1.47) 1.17 (0.99) 0.95 (0.88) 0.33 (0.75) 0.4 (0.49) 0.59 (0.54) 0.11 (0.39)
Medium High 1.25 0.44 fixed 0.35 5 yes yes Heavy P* fixed (0.38) 1.07 (0.67) 0.2 (0.93) 0.26 (2.07) 0.92 (1.36) 0.98 (0.99) 0.37 (0.74) 0.21 (0.61) 0.3 (0.71) 0.12 (0.39)
Medium High 0.77 0.44 fixed 0.35 2 yes yes Heavy P* fixed (0.38) 1.19 (0.55) 0.13 (1.07) 0.28 (1.41) 1.14 (0.95) 0.94 (0.93) 0.35 (0.75) 0.46 (0.33) 0.62 (0.49) 0.08 (0.4)
Medium High 1.25 0.44 fixed 0.35 2 yes yes Heavy P* fixed (0.38) 1.09 (0.67) 0.2 (0.91) 0.16 (2.34) 0.9 (1.36) 0.97 (1.02) 0.35 (0.74) 0.25 (0.48) 0.33 (0.68) 0.08 (0.39)
Medium High 0.77 0.44 fixed 0.35 5 yes yes Heavy P* fixed (0.38) 1.25 (0.58) 0.13 (1.11) 0.19 (1.86) 1 (1.13) 0.93 (1.04) 0.33 (0.72) 0.48 (0.31) 0.6 (0.54) 0.05 (0.54)
Medium High 1.25 0.44 fixed 0.35 5 yes yes Heavy P* fixed (0.38) 1.09 (0.8) 0.3 (0.81) 0.08 (3.52) 0.69 (1.83) 1.07 (1.01) 0.43 (0.67) 0.27 (0.46) 0.29 (0.8) 0.06 (0.59)
Medium High 0.77 0.44 fixed 0.35 2 yes yes Heavy P* fixed (0.38) 1.19 (0.52) 0.13 (1.08) 0.31 (1.26) 1.19 (0.87) 0.92 (0.86) 0.33 (0.75) 0.44 (0.33) 0.65 (0.47) 0.09 (0.35)
Medium High 1.25 0.44 fixed 0.35 2 yes yes Heavy P* fixed (0.38) 1.1 (0.65) 0.2 (0.92) 0.19 (2.09) 0.96 (1.27) 0.94 (1) 0.37 (0.74) 0.24 (0.47) 0.34 (0.65) 0.1 (0.35)
Medium High 0.77 0.44 fixed 0.35 5 yes yes Heavy P* fixed (0.38) 1.28 (0.59) 0.17 (1.06) 0.12 (2.74) 0.92 (1.21) 0.95 (1.06) 0.37 (0.69) 0.52 (0.3) 0.6 (0.56) 0.06 (0.5)
Medium High 1.25 0.44 fixed 0.35 5 yes yes Heavy P* fixed (0.38) 1.09 (0.82) 0.32 (0.79) 0.01 (6.31) 0.55 (2.04) 1.1 (1) 0.43 (0.65) 0.28 (0.45) 0.28 (0.84) 0.07 (0.53)
Medium High 0.77 0.00 fixed 0.35 2 no no Light P* fixed (0.7) 1.12 (0.54) 0.03 (1.34) -0.28 (1.27) -0.46 (1.19) 0.97 (0.64) 0.27 (0.8) 1.53 (0.6) 0.8 (0.52) 0.16 (0.45)
Medium High 1.25 0.00 fixed 0.35 2 no no Light P* fixed (0.7) 0.98 (0.7) 0.13 (1.13) -0.32 (1.97) -0.53 (2.83) 0.97 (0.68) 0.3 (0.77) 1.4 (0.74) 0.64 (0.8) 0.18 (0.44)
Medium High 0.77 0.44 fixed 0.35 2 no no Light P* fixed (0.7) 1.12 (0.54) 0.03 (1.34) -0.28 (1.27) -0.46 (1.19) 0.97 (0.64) 0.27 (0.8) 1.53 (0.6) 0.8 (0.52) 0.16 (0.45)
Medium High 1.25 0.44 fixed 0.35 2 no no Light P* fixed (0.7) 0.98 (0.7) 0.13 (1.13) -0.32 (1.97) -0.53 (2.83) 0.97 (0.68) 0.3 (0.77) 1.4 (0.74) 0.64 (0.8) 0.18 (0.44)
Medium High 0.77 0.00 fixed 0.35 2 no no Moderate P* fixed (0.7) 1.13 (0.49) 0 (1.67) -0.01 (15.73) -0.06 (12.8) 0.87 (0.59) 0.27 (0.84) 0.95 (0.57) 0.81 (0.49) 0.14 (0.32)
Medium High 1.25 0.00 fixed 0.35 2 no no Moderate P* fixed (0.7) 1.01 (0.64) 0.07 (1.29) -0.07 (19.08) -0.07 (5.63) 0.86 (0.67) 0.27 (0.81) 0.82 (0.8) 0.64 (0.77) 0.16 (0.34)
Medium High 0.77 0.44 fixed 0.35 2 no no Moderate P* fixed (0.7) 1.13 (0.49) 0 (1.67) -0.01 (15.73) -0.06 (12.8) 0.87 (0.59) 0.27 (0.84) 0.95 (0.57) 0.81 (0.49) 0.14 (0.32)
Medium High 1.25 0.44 fixed 0.35 2 no no Moderate P* fixed (0.7) 1.01 (0.64) 0.07 (1.29) -0.07 (19.08) -0.07 (5.63) 0.86 (0.67) 0.27 (0.81) 0.82 (0.8) 0.64 (0.77) 0.16 (0.34)
Medium High 0.77 0.00 fixed 0.35 2 no no Heavy P* fixed (0.7) 1.23 (0.51) 0.1 (1.18) 0.38 (1.32) 0.94 (1.13) 0.9 (0.57) 0.3 (0.81) 0.51 (0.55) 0.79 (0.51) 0.14 (0.28)
Medium High 1.25 0.00 fixed 0.35 2 no no Heavy P* fixed (0.7) 1.2 (0.68) 0.2 (0.96) 0.31 (1.78) 0.91 (1.59) 0.89 (0.63) 0.3 (0.77) 0.4 (0.8) 0.64 (0.96) 0.17 (0.28)
Medium High 0.77 0.44 fixed 0.35 2 no no Heavy P* fixed (0.7) 1.23 (0.51) 0.1 (1.18) 0.38 (1.32) 0.94 (1.13) 0.9 (0.57) 0.3 (0.81) 0.51 (0.55) 0.79 (0.51) 0.14 (0.28)
Medium High 1.25 0.44 fixed 0.35 2 no no Heavy P* fixed (0.7) 1.2 (0.68) 0.2 (0.96) 0.31 (1.78) 0.91 (1.59) 0.89 (0.63) 0.3 (0.77) 0.4 (0.8) 0.64 (0.96) 0.17 (0.28)
Medium High 0.77 0.00 fixed 0.35 2 no no Light P* fixed (1.0) 1.17 (0.51) 0 (1.42) -0.26 (1.35) -0.43 (1.31) 0.91 (0.65) 0.27 (0.86) 1.46 (0.62) 0.8 (0.5) 0.16 (0.44)
Medium High 1.25 0.00 fixed 0.35 2 no no Light P* fixed (1.0) 1.03 (0.67) 0.1 (1.2) -0.29 (2.13) -0.49 (3.28) 0.92 (0.69) 0.27 (0.83) 1.33 (0.75) 0.65 (0.78) 0.18 (0.44)
Medium High 0.77 0.44 fixed 0.35 2 no no Light P* fixed (1.0) 1.17 (0.51) 0 (1.42) -0.26 (1.35) -0.43 (1.31) 0.91 (0.65) 0.27 (0.86) 1.46 (0.62) 0.8 (0.5) 0.16 (0.44)
Medium High 1.25 0.44 fixed 0.35 2 no no Light P* fixed (1.0) 1.03 (0.67) 0.1 (1.2) -0.29 (2.13) -0.49 (3.28) 0.92 (0.69) 0.27 (0.83) 1.33 (0.75) 0.65 (0.78) 0.18 (0.44)
Medium High 0.77 0.00 fixed 0.35 2 no no Moderate P* fixed (1.0) 1.19 (0.47) 0 (1.81) 0.01 (198.41) 0.01 (6.2) 0.81 (0.59) 0.23 (0.91) 0.91 (0.57) 0.81 (0.48) 0.14 (0.31)
Medium High 1.25 0.00 fixed 0.35 2 no no Moderate P* fixed (1.0) 1.1 (0.61) 0.07 (1.4) -0.05 (10.85) 0 (4.32) 0.8 (0.64) 0.23 (0.89) 0.79 (0.8) 0.65 (0.74) 0.16 (0.33)
Medium High 0.77 0.44 fixed 0.35 2 no no Moderate P* fixed (1.0) 1.19 (0.47) 0 (1.81) 0.01 (198.41) 0.01 (6.2) 0.81 (0.59) 0.23 (0.91) 0.91 (0.57) 0.81 (0.48) 0.14 (0.31)
Medium High 1.25 0.44 fixed 0.35 2 no no Moderate P* fixed (1.0) 1.1 (0.61) 0.07 (1.4) -0.05 (10.85) 0 (4.32) 0.8 (0.64) 0.23 (0.89) 0.79 (0.8) 0.65 (0.74) 0.16 (0.33)
Medium High 0.77 0.00 fixed 0.35 2 no no Heavy P* fixed (1.0) 1.28 (0.49) 0.07 (1.24) 0.43 (1.19) 1.01 (1.05) 0.84 (0.57) 0.23 (0.86) 0.49 (0.55) 0.79 (0.5) 0.14 (0.28)
Medium High 1.25 0.00 fixed 0.35 2 no no Heavy P* fixed (1.0) 1.27 (0.65) 0.17 (1) 0.36 (1.66) 1.01 (1.5) 0.82 (0.64) 0.27 (0.83) 0.39 (0.81) 0.65 (0.94) 0.16 (0.28)
Medium High 0.77 0.44 fixed 0.35 2 no no Heavy P* fixed (1.0) 1.28 (0.49) 0.07 (1.24) 0.43 (1.19) 1.01 (1.05) 0.84 (0.57) 0.23 (0.86) 0.49 (0.55) 0.79 (0.5) 0.14 (0.28)
Medium High 1.25 0.44 fixed 0.35 2 no no Heavy P* fixed (1.0) 1.27 (0.65) 0.17 (1) 0.36 (1.66) 1.01 (1.5) 0.82 (0.64) 0.27 (0.83) 0.39 (0.81) 0.65 (0.94) 0.16 (0.28)
Medium High 0.77 0.00 fixed 0.35 2 no no Light 75% of F_lim 1.19 (0.5) 0 (1.43) -0.25 (1.38) -0.42 (1.35) 0.89 (0.65) 0.27 (0.87) 1.44 (0.63) 0.8 (0.5) 0.16 (0.45)
Medium High 1.25 0.00 fixed 0.35 2 no no Light 75% of F_lim 1.07 (0.66) 0.1 (1.21) -0.29 (2.18) -0.47 (3.46) 0.9 (0.69) 0.27 (0.84) 1.32 (0.75) 0.66 (0.77) 0.18 (0.44)
Medium High 0.77 0.44 fixed 0.35 2 no no Light 75% of F_lim 1.19 (0.5) 0 (1.43) -0.25 (1.38) -0.42 (1.35) 0.89 (0.65) 0.27 (0.87) 1.44 (0.63) 0.8 (0.5) 0.16 (0.45)
Medium High 1.25 0.44 fixed 0.35 2 no no Light 75% of F_lim 1.07 (0.66) 0.1 (1.21) -0.29 (2.18) -0.47 (3.46) 0.9 (0.69) 0.27 (0.84) 1.32 (0.75) 0.66 (0.77) 0.18 (0.44)
Medium High 0.77 0.00 fixed 0.35 2 no no Moderate 75% of F_lim 1.22 (0.46) 0 (1.87) 0.02 (39.67) 0.03 (5.34) 0.79 (0.59) 0.23 (0.94) 0.89 (0.58) 0.81 (0.48) 0.14 (0.31)
Medium High 1.25 0.00 fixed 0.35 2 no no Moderate 75% of F_lim 1.11 (0.6) 0.03 (1.44) -0.04 (9.74) 0.01 (4.07) 0.79 (0.64) 0.22 (0.91) 0.78 (0.8) 0.65 (0.74) 0.16 (0.33)
Medium High 0.77 0.44 fixed 0.35 2 no no Moderate 75% of F_lim 1.22 (0.46) 0 (1.87) 0.02 (39.67) 0.03 (5.34) 0.79 (0.59) 0.23 (0.94) 0.89 (0.58) 0.81 (0.48) 0.14 (0.31)
Medium High 1.25 0.44 fixed 0.35 2 no no Moderate 75% of F_lim 1.11 (0.6) 0.03 (1.44) -0.04 (9.74) 0.01 (4.07) 0.79 (0.64) 0.22 (0.91) 0.78 (0.8) 0.65 (0.74) 0.16 (0.33)
Medium High 0.77 0.00 fixed 0.35 2 no no Heavy 75% of F_lim 1.29 (0.48) 0.07 (1.26) 0.44 (1.15) 1.05 (1.03) 0.83 (0.57) 0.2 (0.88) 0.48 (0.55) 0.79 (0.5) 0.14 (0.28)
Medium High 1.25 0.00 fixed 0.35 2 no no Heavy 75% of F_lim 1.29 (0.64) 0.17 (1.01) 0.38 (1.62) 1.04 (1.47) 0.81 (0.64) 0.23 (0.85) 0.38 (0.81) 0.65 (0.94) 0.16 (0.28)
Medium High 0.77 0.44 fixed 0.35 2 no no Heavy 75% of F_lim 1.29 (0.48) 0.07 (1.26) 0.44 (1.15) 1.05 (1.03) 0.83 (0.57) 0.2 (0.88) 0.48 (0.55) 0.79 (0.5) 0.14 (0.28)
Medium High 1.25 0.44 fixed 0.35 2 no no Heavy 75% of F_lim 1.29 (0.64) 0.17 (1.01) 0.38 (1.62) 1.04 (1.47) 0.81 (0.64) 0.23 (0.85) 0.38 (0.81) 0.65 (0.94) 0.16 (0.28)
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Life Assessment SPR SA Projec- ABC Exploitation Control Overfished Initial Final Catch
history uncertainty σR φR h target years tions? avg.? history rule S / SMSY probability ΔS5 ΔS15 F / FMSY POF (true) C / MSY C / MSY AAV
Slow Low 0.77 0.00 fixed 0.35 2 no no Light OFL 0.8 (0.27) 0 (2.7) -0.26 (0.76) -0.56 (0.4) 1.07 (0.28) 0.47 (0.51) 2.76 (0.61) 0.92 (0.3) 0.09 (0.66)
Slow Low 1.25 0.00 fixed 0.35 2 no no Light OFL 0.74 (0.41) 0 (1.68) -0.28 (0.86) -0.58 (0.65) 1.08 (0.29) 0.49 (0.49) 2.59 (0.75) 0.8 (0.54) 0.1 (0.64)
Slow Low 0.77 0.44 fixed 0.35 2 no no Light OFL 0.74 (0.24) 0 (2.94) -0.27 (0.69) -0.58 (0.31) 1.08 (0.28) 0.48 (0.51) 2.23 (0.58) 0.68 (0.26) 0.09 (0.67)
Slow Low 1.25 0.44 fixed 0.35 2 no no Light OFL 0.59 (0.34) 0 (1.64) -0.3 (0.64) -0.64 (0.3) 1.09 (0.28) 0.51 (0.49) 1.63 (0.6) 0.34 (0.4) 0.1 (0.69)
Slow Low 0.77 0.44 fixed 0.46 2 no no Light OFL 0.85 (0.18) 0 (4.47) -0.17 (0.9) -0.42 (0.45) 1.07 (0.32) 0.49 (0.55) 1.6 (0.68) 0.76 (0.22) 0.07 (0.77)
Slow Low 1.25 0.44 fixed 0.46 2 no no Light OFL 0.74 (0.26) 0 (3.3) -0.21 (0.81) -0.49 (0.43) 1.09 (0.31) 0.51 (0.54) 1.17 (0.7) 0.41 (0.34) 0.08 (0.78)
Slow Low 0.77 0.00 fixed 0.35 2 no no Moderate OFL 0.83 (0.27) 0 (3.19) -0.19 (0.87) -0.39 (0.58) 1.04 (0.19) 0.51 (0.51) 1.84 (0.4) 0.94 (0.32) 0.07 (0.25)
Slow Low 1.25 0.00 fixed 0.35 2 no no Moderate OFL 0.77 (0.46) 0 (1.81) -0.2 (1.34) -0.43 (1.09) 1.05 (0.2) 0.5 (0.48) 1.71 (0.52) 0.82 (0.73) 0.08 (0.25)
Slow Low 0.77 0.44 fixed 0.35 2 no no Moderate OFL 0.77 (0.24) 0 (3.23) -0.2 (0.69) -0.43 (0.39) 1.06 (0.18) 0.51 (0.49) 1.54 (0.38) 0.65 (0.26) 0.07 (0.27)
Slow Low 1.25 0.44 fixed 0.35 2 no no Moderate OFL 0.62 (0.35) 0 (1.62) -0.25 (0.63) -0.52 (0.36) 1.07 (0.19) 0.53 (0.46) 1.11 (0.41) 0.31 (0.42) 0.08 (0.28)
Slow Low 0.77 0.44 fixed 0.46 2 no no Moderate OFL 0.89 (0.18) 0 (7.89) -0.09 (1.18) -0.22 (0.84) 1.03 (0.18) 0.51 (0.55) 1.07 (0.39) 0.72 (0.21) 0.05 (0.23)
Slow Low 1.25 0.44 fixed 0.46 2 no no Moderate OFL 0.76 (0.26) 0 (3.04) -0.13 (0.98) -0.32 (0.69) 1.04 (0.18) 0.52 (0.53) 0.77 (0.42) 0.39 (0.35) 0.06 (0.25)
Slow Low 0.77 0.00 fixed 0.35 2 no no Heavy OFL 0.87 (0.27) 0 (3.48) 0.01 (12.82) -0.01 (31.93) 1.01 (0.14) 0.47 (0.54) 0.99 (0.34) 0.89 (0.29) 0.06 (0.18)
Slow Low 1.25 0.00 fixed 0.35 2 no no Heavy OFL 0.8 (0.42) 0 (1.56) -0.04 (10.57) -0.04 (14.47) 1.02 (0.14) 0.49 (0.51) 0.91 (0.56) 0.76 (0.54) 0.07 (0.2)
Slow Low 0.77 0.44 fixed 0.35 2 no no Heavy OFL 0.81 (0.25) 0 (4.09) -0.01 (13.82) -0.07 (3.06) 1.02 (0.15) 0.49 (0.55) 0.76 (0.28) 0.61 (0.25) 0.06 (0.18)
Slow Low 1.25 0.44 fixed 0.35 2 no no Heavy OFL 0.63 (0.36) 0 (1.63) -0.07 (2.67) -0.23 (1.19) 1.03 (0.15) 0.51 (0.53) 0.5 (0.36) 0.26 (0.42) 0.06 (0.19)
Slow Low 0.77 0.44 fixed 0.46 2 no no Heavy OFL 0.92 (0.18) 0 (17.32) 0.09 (1.12) 0.2 (1.13) 1.01 (0.14) 0.49 (0.58) 0.56 (0.29) 0.67 (0.2) 0.04 (0.17)
Slow Low 1.25 0.44 fixed 0.46 2 no no Heavy OFL 0.76 (0.27) 0 (3.13) 0.03 (3.13) 0.01 (6.31) 1.02 (0.14) 0.5 (0.56) 0.38 (0.36) 0.33 (0.33) 0.05 (0.18)
Slow Low 0.77 0.00 fixed 0.35 2 no no Light P* var (0.38) 0.94 (0.22) 0 (3.52) -0.23 (0.82) -0.51 (0.44) 0.93 (0.26) 0.27 (0.67) 2.52 (0.64) 0.97 (0.29) 0.09 (0.63)
Slow Low 1.25 0.00 fixed 0.35 2 no no Light P* var (0.38) 0.89 (0.35) 0 (2.52) -0.25 (0.94) -0.53 (0.76) 0.92 (0.28) 0.27 (0.67) 2.37 (0.78) 0.83 (0.54) 0.1 (0.62)
Slow Low 0.77 0.44 fixed 0.35 2 no no Light P* var (0.38) 0.9 (0.19) 0 (3.59) -0.24 (0.74) -0.52 (0.33) 0.94 (0.25) 0.27 (0.67) 2.04 (0.6) 0.71 (0.24) 0.09 (0.66)
Slow Low 1.25 0.44 fixed 0.35 2 no no Light P* var (0.38) 0.77 (0.26) 0 (3.17) -0.27 (0.68) -0.59 (0.33) 0.92 (0.25) 0.27 (0.67) 1.49 (0.62) 0.37 (0.38) 0.1 (0.7)
Slow Low 0.77 0.44 fixed 0.46 2 no no Light P* var (0.38) 0.95 (0.16) 0 (5.12) -0.15 (0.97) -0.37 (0.5) 0.95 (0.3) 0.27 (0.74) 1.46 (0.7) 0.75 (0.22) 0.07 (0.74)
Slow Low 1.25 0.44 fixed 0.46 2 no no Light P* var (0.38) 0.85 (0.22) 0 (4.48) -0.19 (0.86) -0.45 (0.47) 0.94 (0.32) 0.27 (0.73) 1.07 (0.73) 0.41 (0.34) 0.08 (0.76)
Slow Low 0.77 0.00 fixed 0.35 2 no no Moderate P* var (0.38) 0.97 (0.23) 0 (6.4) -0.16 (1.01) -0.33 (0.71) 0.91 (0.18) 0.27 (0.69) 1.68 (0.41) 0.98 (0.32) 0.07 (0.25)
Slow Low 1.25 0.00 fixed 0.35 2 no no Moderate P* var (0.38) 0.92 (0.4) 0 (3.06) -0.17 (1.63) -0.37 (1.45) 0.9 (0.19) 0.27 (0.7) 1.56 (0.53) 0.86 (0.71) 0.08 (0.24)
Slow Low 0.77 0.44 fixed 0.35 2 no no Moderate P* var (0.38) 0.93 (0.2) 0 (7.7) -0.17 (0.76) -0.37 (0.46) 0.92 (0.16) 0.27 (0.67) 1.41 (0.38) 0.69 (0.25) 0.07 (0.26)
Slow Low 1.25 0.44 fixed 0.35 2 no no Moderate P* var (0.38) 0.79 (0.27) 0 (2.87) -0.22 (0.7) -0.46 (0.42) 0.9 (0.17) 0.27 (0.65) 1.02 (0.42) 0.34 (0.41) 0.08 (0.27)
Slow Low 0.77 0.44 fixed 0.46 2 no no Moderate P* var (0.38) 0.98 (0.16) 0 (11.58) -0.07 (1.49) -0.16 (1.15) 0.91 (0.17) 0.27 (0.78) 0.98 (0.39) 0.73 (0.22) 0.06 (0.23)
Slow Low 1.25 0.44 fixed 0.46 2 no no Moderate P* var (0.38) 0.88 (0.23) 0 (8.23) -0.11 (1.16) -0.28 (0.86) 0.91 (0.17) 0.24 (0.78) 0.7 (0.42) 0.39 (0.35) 0.06 (0.24)
Slow Low 0.77 0.00 fixed 0.35 2 no no Heavy P* var (0.38) 1.01 (0.23) 0 (6.47) 0.07 (2.26) 0.12 (2.21) 0.87 (0.14) 0.22 (0.78) 0.82 (0.38) 0.95 (0.29) 0.06 (0.19)
Slow Low 1.25 0.00 fixed 0.35 2 no no Heavy P* var (0.38) 0.97 (0.36) 0 (2.82) 0.03 (3.31) 0.11 (3.02) 0.85 (0.14) 0.2 (0.79) 0.77 (0.6) 0.81 (0.52) 0.08 (0.2)
Slow Low 0.77 0.44 fixed 0.35 2 no no Heavy P* var (0.38) 0.97 (0.21) 0 (12.25) 0.05 (2.54) 0.05 (4.17) 0.87 (0.14) 0.2 (0.79) 0.64 (0.33) 0.66 (0.24) 0.06 (0.18)
Slow Low 1.25 0.44 fixed 0.35 2 no no Heavy P* var (0.38) 0.82 (0.28) 0 (4.14) -0.01 (86.5) -0.11 (3) 0.84 (0.14) 0.2 (0.81) 0.43 (0.39) 0.3 (0.39) 0.07 (0.19)
Slow Low 0.77 0.44 fixed 0.46 2 no no Heavy P* var (0.38) 1.02 (0.16) 0 (17.32) 0.16 (0.66) 0.35 (0.69) 0.86 (0.14) 0.18 (0.93) 0.42 (0.33) 0.69 (0.2) 0.05 (0.17)
Slow Low 1.25 0.44 fixed 0.46 2 no no Heavy P* var (0.38) 0.9 (0.23) 0 (7.33) 0.09 (1.36) 0.15 (1.67) 0.84 (0.14) 0.16 (0.98) 0.29 (0.41) 0.35 (0.33) 0.05 (0.18)
Slow Low 0.77 0.00 fixed 0.35 2 no no Light P* varied (0.7) 1.01 (0.21) 0 (3.95) -0.2 (0.87) -0.47 (0.47) 0.86 (0.25) 0.19 (0.79) 2.37 (0.66) 0.98 (0.29) 0.08 (0.65)
Slow Low 1.25 0.00 fixed 0.35 2 no no Light P* varied (0.7) 0.97 (0.33) 0 (2.93) -0.23 (1) -0.5 (0.86) 0.84 (0.27) 0.2 (0.78) 2.22 (0.8) 0.85 (0.54) 0.1 (0.62)
Slow Low 0.77 0.44 fixed 0.35 2 no no Light P* varied (0.7) 0.97 (0.18) 0 (3.87) -0.22 (0.77) -0.49 (0.36) 0.87 (0.25) 0.2 (0.79) 1.91 (0.62) 0.73 (0.24) 0.09 (0.66)
Slow Low 1.25 0.44 fixed 0.35 2 no no Light P* varied (0.7) 0.86 (0.23) 0 (3.84) -0.26 (0.71) -0.56 (0.35) 0.85 (0.25) 0.18 (0.77) 1.4 (0.64) 0.38 (0.38) 0.09 (0.69)
Slow Low 0.77 0.44 fixed 0.46 2 no no Light P* varied (0.7) 1.01 (0.15) 0 (4.99) -0.14 (1.02) -0.34 (0.53) 0.88 (0.3) 0.21 (0.85) 1.36 (0.72) 0.75 (0.22) 0.07 (0.73)
Slow Low 1.25 0.44 fixed 0.46 2 no no Light P* varied (0.7) 0.91 (0.21) 0 (5.35) -0.18 (0.9) -0.43 (0.5) 0.87 (0.31) 0.2 (0.83) 1 (0.74) 0.41 (0.35) 0.08 (0.74)
Slow Low 0.77 0.00 fixed 0.35 2 no no Moderate P* varied (0.7) 1.05 (0.22) 0 (7.96) -0.13 (1.13) -0.28 (0.84) 0.84 (0.17) 0.18 (0.88) 1.58 (0.41) 0.99 (0.31) 0.07 (0.25)
Slow Low 1.25 0.00 fixed 0.35 2 no no Moderate P* varied (0.7) 0.99 (0.38) 0 (3.97) -0.15 (1.91) -0.33 (1.81) 0.82 (0.18) 0.18 (0.85) 1.46 (0.53) 0.88 (0.7) 0.08 (0.24)
Slow Low 0.77 0.44 fixed 0.35 2 no no Moderate P* varied (0.7) 1 (0.19) 0 (9.06) -0.15 (0.83) -0.33 (0.51) 0.85 (0.15) 0.18 (0.84) 1.32 (0.38) 0.71 (0.25) 0.07 (0.26)
Slow Low 1.25 0.44 fixed 0.35 2 no no Moderate P* varied (0.7) 0.88 (0.25) 0 (6.05) -0.19 (0.75) -0.42 (0.47) 0.83 (0.16) 0.18 (0.82) 0.96 (0.42) 0.36 (0.4) 0.08 (0.26)
Slow Low 0.77 0.44 fixed 0.46 2 no no Moderate P* varied (0.7) 1.03 (0.15) 0 (11.2) -0.05 (1.84) -0.13 (1.51) 0.85 (0.17) 0.18 (0.98) 0.92 (0.4) 0.73 (0.22) 0.06 (0.24)
Slow Low 1.25 0.44 fixed 0.46 2 no no Moderate P* varied (0.7) 0.94 (0.21) 0 (12.38) -0.1 (1.32) -0.24 (1.01) 0.84 (0.17) 0.16 (0.97) 0.65 (0.42) 0.4 (0.36) 0.06 (0.24)
Slow Low 0.77 0.00 fixed 0.35 2 no no Heavy P* varied (0.7) 1.09 (0.22) 0 (14.27) 0.11 (1.52) 0.19 (1.48) 0.8 (0.14) 0.11 (0.99) 0.72 (0.41) 0.97 (0.28) 0.06 (0.19)
Slow Low 1.25 0.00 fixed 0.35 2 no no Heavy P* varied (0.7) 1.05 (0.34) 0 (3.91) 0.06 (2.36) 0.19 (2.14) 0.77 (0.15) 0.11 (1) 0.67 (0.64) 0.84 (0.51) 0.08 (0.2)
Slow Low 1.25 0.44 fixed 0.35 2 no no Heavy P* varied (0.7) 0.91 (0.26) 0 (6.91) 0.03 (4.9) -0.04 (14.07) 0.77 (0.15) 0.11 (1.01) 0.38 (0.42) 0.32 (0.39) 0.07 (0.19)
Slow Low 0.77 0.00 fixed 0.35 2 no no Light P* varied (1.0) 1.06 (0.21) 0 (4.12) -0.19 (0.91) -0.45 (0.51) 0.81 (0.25) 0.13 (0.89) 2.25 (0.68) 1 (0.29) 0.08 (0.66)
Slow Low 1.25 0.00 fixed 0.35 2 no no Light P* varied (1.0) 1.02 (0.32) 0 (3.21) -0.22 (1.05) -0.48 (0.93) 0.79 (0.26) 0.16 (0.85) 2.12 (0.82) 0.87 (0.54) 0.1 (0.64)
Slow Low 0.77 0.44 fixed 0.35 2 no no Light P* varied (1.0) 1.02 (0.18) 0 (4.22) -0.21 (0.8) -0.47 (0.38) 0.82 (0.25) 0.13 (0.9) 1.82 (0.63) 0.74 (0.24) 0.08 (0.69)
Slow Low 1.25 0.44 fixed 0.35 2 no no Light P* varied (1.0) 0.91 (0.22) 0 (4.04) -0.24 (0.73) -0.54 (0.37) 0.8 (0.25) 0.13 (0.85) 1.33 (0.65) 0.39 (0.37) 0.09 (0.7)
Slow Low 0.77 0.44 fixed 0.46 2 no no Light P* varied (1.0) 1.04 (0.15) 0 (5.22) -0.13 (1.07) -0.32 (0.56) 0.84 (0.3) 0.13 (0.95) 1.3 (0.73) 0.74 (0.22) 0.07 (0.74)
Slow Low 1.25 0.44 fixed 0.46 2 no no Light P* varied (1.0) 0.95 (0.2) 0 (5.4) -0.17 (0.93) -0.41 (0.52) 0.82 (0.3) 0.16 (0.93) 0.95 (0.76) 0.41 (0.35) 0.08 (0.74)
Slow Low 0.77 0.00 fixed 0.35 2 no no Moderate P* varied (1.0) 1.1 (0.22) 0 (8.76) -0.12 (1.25) -0.26 (0.96) 0.8 (0.17) 0.13 (1.01) 1.5 (0.41) 1 (0.31) 0.07 (0.25)
Slow Low 1.25 0.00 fixed 0.35 2 no no Moderate P* varied (1.0) 1.05 (0.37) 0 (4.87) -0.14 (2.18) -0.3 (2.17) 0.78 (0.18) 0.12 (0.99) 1.39 (0.53) 0.89 (0.7) 0.08 (0.24)
Slow Low 0.77 0.44 fixed 0.35 2 no no Moderate P* varied (1.0) 1.05 (0.18) 0 (8.34) -0.13 (0.88) -0.3 (0.57) 0.81 (0.15) 0.13 (0.97) 1.26 (0.38) 0.72 (0.24) 0.07 (0.26)
Slow Low 1.25 0.44 fixed 0.35 2 no no Moderate P* varied (1.0) 0.93 (0.24) 0 (7.57) -0.18 (0.79) -0.4 (0.51) 0.78 (0.15) 0.13 (0.97) 0.91 (0.42) 0.37 (0.4) 0.07 (0.26)
Slow Low 0.77 0.44 fixed 0.46 2 no no Moderate P* varied (1.0) 1.07 (0.15) 0 (17.32) -0.04 (2.25) -0.1 (1.95) 0.8 (0.17) 0.11 (1.14) 0.87 (0.4) 0.73 (0.22) 0.05 (0.24)
Slow Low 1.25 0.44 fixed 0.46 2 no no Moderate P* varied (1.0) 0.98 (0.21) 0 (13.81) -0.09 (1.48) -0.22 (1.16) 0.79 (0.17) 0.09 (1.11) 0.62 (0.42) 0.4 (0.36) 0.06 (0.24)
Slow Low 0.77 0.00 fixed 0.35 2 no no Heavy P* varied (1.0) 1.14 (0.22) 0 (12.89) 0.14 (1.25) 0.24 (1.23) 0.75 (0.14) 0.04 (1.19) 0.65 (0.44) 0.98 (0.28) 0.06 (0.2)
Slow Low 1.25 0.00 fixed 0.35 2 no no Heavy P* varied (1.0) 1.1 (0.33) 0 (4.81) 0.09 (1.99) 0.24 (1.81) 0.72 (0.15) 0.07 (1.17) 0.61 (0.66) 0.85 (0.5) 0.08 (0.21)
Slow Low 1.25 0.44 fixed 0.35 2 no no Heavy P* varied (1.0) 0.96 (0.25) 0 (10.91) 0.05 (2.86) 0.01 (10.79) 0.72 (0.15) 0.07 (1.18) 0.35 (0.45) 0.33 (0.38) 0.07 (0.19)
Slow Low 0.77 0.00 fixed 0.35 2 no no Light P* fixed (0.38) 0.9 (0.25) 0 (3.43) -0.23 (0.82) -0.51 (0.44) 0.96 (0.29) 0.31 (0.68) 2.52 (0.64) 0.96 (0.29) 0.08 (0.67)
Slow Low 1.25 0.00 fixed 0.35 2 no no Light P* fixed (0.38) 0.84 (0.39) 0 (2.28) -0.25 (0.94) -0.54 (0.75) 0.97 (0.31) 0.33 (0.65) 2.37 (0.78) 0.84 (0.53) 0.1 (0.66)
Slow Low 0.77 0.44 fixed 0.35 2 no no Light P* fixed (0.38) 0.84 (0.22) 0 (3.84) -0.24 (0.74) -0.53 (0.35) 0.96 (0.28) 0.31 (0.67) 2.04 (0.6) 0.71 (0.24) 0.08 (0.69)
Slow Low 1.25 0.44 fixed 0.35 2 no no Light P* fixed (0.38) 0.7 (0.32) 0 (2.34) -0.27 (0.68) -0.6 (0.33) 0.98 (0.29) 0.33 (0.65) 1.49 (0.62) 0.36 (0.38) 0.09 (0.73)
Slow Low 0.77 0.44 fixed 0.46 2 no no Light P* fixed (0.38) 0.93 (0.17) 0 (5.27) -0.15 (0.97) -0.38 (0.51) 0.96 (0.33) 0.31 (0.73) 1.46 (0.7) 0.76 (0.21) 0.07 (0.76)
Slow Low 1.25 0.44 fixed 0.46 2 no no Light P* fixed (0.38) 0.81 (0.25) 0 (3.98) -0.19 (0.86) -0.46 (0.47) 0.98 (0.35) 0.32 (0.71) 1.07 (0.73) 0.42 (0.33) 0.07 (0.79)
Slow Low 0.77 0.00 fixed 0.35 2 no no Moderate P* fixed (0.38) 0.92 (0.25) 0 (4.88) -0.16 (1) -0.33 (0.71) 0.94 (0.2) 0.3 (0.71) 1.68 (0.41) 0.97 (0.31) 0.07 (0.25)
Slow Low 1.25 0.00 fixed 0.35 2 no no Moderate P* fixed (0.38) 0.86 (0.43) 0 (2.54) -0.17 (1.61) -0.38 (1.39) 0.94 (0.21) 0.31 (0.68) 1.56 (0.53) 0.85 (0.7) 0.08 (0.24)
Slow Low 0.77 0.44 fixed 0.35 2 no no Moderate P* fixed (0.38) 0.88 (0.23) 0 (6.14) -0.17 (0.76) -0.38 (0.46) 0.94 (0.18) 0.31 (0.69) 1.41 (0.38) 0.68 (0.24) 0.06 (0.26)
Slow Low 1.25 0.44 fixed 0.35 2 no no Moderate P* fixed (0.38) 0.72 (0.32) 0 (2.33) -0.22 (0.7) -0.47 (0.42) 0.95 (0.19) 0.33 (0.66) 1.02 (0.42) 0.33 (0.4) 0.07 (0.28)
Slow Low 0.77 0.44 fixed 0.46 2 no no Moderate P* fixed (0.38) 0.96 (0.17) 0 (11.61) -0.07 (1.46) -0.17 (1.1) 0.93 (0.18) 0.29 (0.78) 0.98 (0.39) 0.72 (0.2) 0.05 (0.23)
Slow Low 1.25 0.44 fixed 0.46 2 no no Moderate P* fixed (0.38) 0.84 (0.25) 0 (5.23) -0.11 (1.14) -0.28 (0.83) 0.94 (0.18) 0.31 (0.76) 0.7 (0.42) 0.39 (0.33) 0.06 (0.24)
Slow Low 0.77 0.00 fixed 0.35 2 no no Heavy P* fixed (0.38) 0.97 (0.25) 0 (4.95) 0.04 (3.39) 0.07 (3.31) 0.91 (0.14) 0.27 (0.75) 0.9 (0.34) 0.93 (0.28) 0.05 (0.18)
Slow Low 1.25 0.00 fixed 0.35 2 no no Heavy P* fixed (0.38) 0.91 (0.4) 0 (2.14) 0 (4.65) 0.03 (4.34) 0.92 (0.14) 0.29 (0.71) 0.84 (0.56) 0.79 (0.51) 0.07 (0.2)
Slow Low 0.77 0.44 fixed 0.35 2 no no Heavy P* fixed (0.38) 0.92 (0.23) 0 (6.23) 0.02 (4.86) 0.01 (31.55) 0.91 (0.15) 0.27 (0.76) 0.69 (0.28) 0.64 (0.23) 0.05 (0.18)
Slow Low 1.25 0.44 fixed 0.35 2 no no Heavy P* fixed (0.38) 0.72 (0.33) 0 (2.52) -0.03 (6.1) -0.16 (1.87) 0.92 (0.15) 0.29 (0.74) 0.46 (0.36) 0.29 (0.39) 0.06 (0.19)
Slow Low 0.77 0.44 fixed 0.46 2 no no Heavy P* fixed (0.38) 0.99 (0.17) 0 (17.32) 0.12 (0.87) 0.27 (0.86) 0.91 (0.14) 0.24 (0.85) 0.51 (0.29) 0.66 (0.2) 0.04 (0.17)
Slow Low 1.25 0.44 fixed 0.46 2 no no Heavy P* fixed (0.38) 0.84 (0.25) 0 (4.27) 0.05 (2.02) 0.08 (2.75) 0.92 (0.14) 0.26 (0.82) 0.34 (0.36) 0.34 (0.32) 0.05 (0.18)
Slow Low 0.77 0.00 fixed 0.35 2 no no Light P* fixed (0.7) 0.97 (0.24) 0 (3.9) -0.2 (0.87) -0.48 (0.48) 0.89 (0.29) 0.22 (0.8) 2.37 (0.66) 0.98 (0.28) 0.08 (0.69)
Slow Low 1.25 0.00 fixed 0.35 2 no no Light P* fixed (0.7) 0.9 (0.38) 0 (2.65) -0.23 (1) -0.51 (0.84) 0.89 (0.3) 0.22 (0.77) 2.22 (0.8) 0.86 (0.52) 0.09 (0.67)
Slow Low 0.77 0.44 fixed 0.35 2 no no Light P* fixed (0.7) 0.91 (0.21) 0 (4.37) -0.22 (0.77) -0.5 (0.37) 0.89 (0.29) 0.22 (0.81) 1.91 (0.62) 0.73 (0.23) 0.08 (0.7)
Slow Low 1.25 0.44 fixed 0.35 2 no no Light P* fixed (0.7) 0.77 (0.3) 0 (3.16) -0.26 (0.71) -0.57 (0.36) 0.91 (0.29) 0.23 (0.79) 1.4 (0.64) 0.38 (0.36) 0.09 (0.74)
Slow Low 0.77 0.44 fixed 0.46 2 no no Light P* fixed (0.7) 0.98 (0.16) 0 (5.45) -0.14 (1.02) -0.35 (0.55) 0.9 (0.34) 0.22 (0.86) 1.36 (0.72) 0.75 (0.21) 0.06 (0.76)
Slow Low 1.25 0.44 fixed 0.46 2 no no Light P* fixed (0.7) 0.86 (0.24) 0 (4.52) -0.18 (0.9) -0.43 (0.51) 0.91 (0.35) 0.22 (0.84) 1 (0.74) 0.42 (0.32) 0.07 (0.78)
Slow Low 0.77 0.00 fixed 0.35 2 no no Moderate P* fixed (0.7) 1 (0.24) 0 (6.49) -0.13 (1.13) -0.29 (0.83) 0.87 (0.19) 0.18 (0.91) 1.58 (0.41) 0.98 (0.3) 0.06 (0.23)
Slow Low 1.25 0.00 fixed 0.35 2 no no Moderate P* fixed (0.7) 0.94 (0.42) 0 (3.09) -0.15 (1.87) -0.34 (1.68) 0.86 (0.2) 0.2 (0.87) 1.46 (0.53) 0.87 (0.68) 0.07 (0.24)
Slow Low 0.77 0.44 fixed 0.35 2 no no Moderate P* fixed (0.7) 0.96 (0.21) 0 (8.19) -0.15 (0.83) -0.33 (0.52) 0.87 (0.18) 0.2 (0.88) 1.32 (0.38) 0.7 (0.23) 0.06 (0.25)
Slow Low 1.25 0.44 fixed 0.35 2 no no Moderate P* fixed (0.7) 0.79 (0.31) 0 (2.94) -0.19 (0.75) -0.43 (0.47) 0.88 (0.19) 0.22 (0.84) 0.96 (0.42) 0.35 (0.38) 0.07 (0.27)
Slow Low 0.77 0.44 fixed 0.46 2 no no Moderate P* fixed (0.7) 1.02 (0.16) 0 (14.39) -0.05 (1.77) -0.13 (1.41) 0.87 (0.18) 0.18 (1) 0.92 (0.39) 0.73 (0.2) 0.05 (0.23)
Slow Low 1.25 0.44 fixed 0.46 2 no no Moderate P* fixed (0.7) 0.89 (0.24) 0 (7.84) -0.1 (1.3) -0.25 (0.97) 0.87 (0.18) 0.18 (0.98) 0.66 (0.42) 0.39 (0.33) 0.05 (0.24)
Slow Low 0.77 0.00 fixed 0.35 2 no no Heavy P* fixed (0.7) 1.04 (0.24) 0 (7.05) 0.06 (2.24) 0.13 (2.08) 0.84 (0.14) 0.16 (0.94) 0.85 (0.34) 0.94 (0.27) 0.05 (0.18)
Slow Low 1.25 0.00 fixed 0.35 2 no no Heavy P* fixed (0.7) 0.99 (0.38) 0 (2.62) 0.02 (3.37) 0.09 (2.99) 0.85 (0.14) 0.16 (0.9) 0.78 (0.56) 0.81 (0.5) 0.07 (0.2)
Slow Low 0.77 0.44 fixed 0.35 2 no no Heavy P* fixed (0.7) 1 (0.21) 0 (18.71) 0.05 (2.47) 0.06 (3.65) 0.84 (0.15) 0.14 (0.98) 0.65 (0.28) 0.65 (0.22) 0.05 (0.18)
Slow Low 1.25 0.44 fixed 0.35 2 no no Heavy P* fixed (0.7) 0.8 (0.31) 0 (3.48) -0.01 (59.66) -0.11 (3.01) 0.85 (0.15) 0.17 (0.95) 0.43 (0.36) 0.3 (0.37) 0.06 (0.19)
Slow Low 1.25 0.44 fixed 0.46 2 no no Heavy P* fixed (0.7) 0.9 (0.25) 0 (5.73) 0.07 (1.63) 0.13 (2) 0.85 (0.14) 0.13 (1.03) 0.32 (0.36) 0.34 (0.31) 0.05 (0.18)
Slow Low 0.77 0.00 fixed 0.35 2 no no Light P* fixed (1.0) 1.02 (0.23) 0 (4.32) -0.19 (0.91) -0.45 (0.52) 0.84 (0.29) 0.16 (0.91) 2.25 (0.68) 0.99 (0.27) 0.08 (0.71)
Slow Low 1.25 0.00 fixed 0.35 2 no no Light P* fixed (1.0) 0.96 (0.37) 0 (2.91) -0.22 (1.05) -0.48 (0.91) 0.85 (0.3) 0.18 (0.86) 2.12 (0.82) 0.87 (0.51) 0.09 (0.69)
Slow Low 0.77 0.44 fixed 0.35 2 no no Light P* fixed (1.0) 0.97 (0.2) 0 (5.14) -0.21 (0.8) -0.48 (0.39) 0.84 (0.29) 0.16 (0.92) 1.82 (0.63) 0.74 (0.23) 0.08 (0.73)
Slow Low 1.25 0.44 fixed 0.35 2 no no Light P* fixed (1.0) 0.82 (0.29) 0 (3.82) -0.24 (0.73) -0.55 (0.38) 0.86 (0.29) 0.18 (0.89) 1.33 (0.65) 0.39 (0.35) 0.08 (0.75)
Slow Low 0.77 0.44 fixed 0.46 2 no no Light P* fixed (1.0) 1.02 (0.16) 0 (5.62) -0.13 (1.07) -0.32 (0.58) 0.85 (0.33) 0.16 (0.97) 1.3 (0.73) 0.75 (0.21) 0.06 (0.76)
Slow Low 1.25 0.44 fixed 0.46 2 no no Light P* fixed (1.0) 0.9 (0.23) 0 (5.03) -0.17 (0.93) -0.41 (0.53) 0.86 (0.34) 0.18 (0.95) 0.95 (0.76) 0.42 (0.32) 0.07 (0.78)
Slow Low 0.77 0.00 fixed 0.35 2 no no Moderate P* fixed (1.0) 1.06 (0.24) 0 (7.94) -0.12 (1.24) -0.26 (0.95) 0.82 (0.18) 0.13 (1.05) 1.5 (0.41) 0.99 (0.29) 0.06 (0.23)
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Life Assessment SPR SA Projec- ABC Exploitation Control Overfished Initial Final Catch
history uncertainty σR φR h target years tions? avg.? history rule S / SMSY probability ΔS5 ΔS15 F / FMSY POF (true) C / MSY C / MSY AAV
Slow Low 1.25 0.00 fixed 0.35 2 no no Moderate P* fixed (1.0) 0.99 (0.4) 0 (3.43) -0.14 (2.12) -0.32 (1.99) 0.82 (0.19) 0.13 (1.02) 1.39 (0.53) 0.88 (0.67) 0.07 (0.23)
Slow Low 0.77 0.44 fixed 0.35 2 no no Moderate P* fixed (1.0) 1.02 (0.21) 0 (9.64) -0.13 (0.88) -0.3 (0.57) 0.82 (0.17) 0.13 (1.03) 1.26 (0.38) 0.71 (0.23) 0.06 (0.24)
Slow Low 1.25 0.44 fixed 0.35 2 no no Moderate P* fixed (1.0) 0.84 (0.3) 0 (3.55) -0.18 (0.79) -0.4 (0.51) 0.83 (0.18) 0.13 (0.99) 0.91 (0.42) 0.36 (0.37) 0.07 (0.26)
Slow Low 0.77 0.44 fixed 0.46 2 no no Moderate P* fixed (1.0) 1.05 (0.16) 0 (15.18) -0.04 (2.13) -0.11 (1.77) 0.82 (0.18) 0.11 (1.15) 0.88 (0.39) 0.72 (0.2) 0.05 (0.22)
Slow Low 1.25 0.44 fixed 0.46 2 no no Moderate P* fixed (1.0) 0.93 (0.23) 0 (9.52) -0.09 (1.44) -0.23 (1.1) 0.83 (0.18) 0.11 (1.12) 0.63 (0.42) 0.39 (0.32) 0.05 (0.24)
Slow Low 0.77 0.00 fixed 0.35 2 no no Heavy P* fixed (1.0) 1.1 (0.23) 0 (10.12) 0.08 (1.8) 0.17 (1.64) 0.8 (0.14) 0.09 (1.14) 0.81 (0.34) 0.95 (0.27) 0.05 (0.18)
Slow Low 1.25 0.00 fixed 0.35 2 no no Heavy P* fixed (1.0) 1.04 (0.37) 0 (3.04) 0.03 (2.82) 0.13 (2.45) 0.8 (0.14) 0.09 (1.07) 0.75 (0.56) 0.83 (0.49) 0.07 (0.2)
Slow Low 1.25 0.44 fixed 0.35 2 no no Heavy P* fixed (1.0) 0.85 (0.3) 0 (4.29) 0 (10.84) -0.08 (5.31) 0.8 (0.15) 0.09 (1.12) 0.41 (0.36) 0.31 (0.36) 0.06 (0.18)
Slow Low 0.77 0.00 fixed 0.35 2 no no Light 75% of F_lim 1.06 (0.22) 0 (4.75) -0.18 (0.94) -0.43 (0.55) 0.8 (0.3) 0.13 (0.97) 2.16 (0.69) 0.99 (0.27) 0.08 (0.71)
Slow Low 1.25 0.00 fixed 0.35 2 no no Light 75% of F_lim 1.01 (0.36) 0 (3.16) -0.21 (1.09) -0.46 (0.97) 0.81 (0.31) 0.13 (0.94) 2.04 (0.83) 0.88 (0.5) 0.09 (0.7)
Slow Low 0.77 0.44 fixed 0.35 2 no no Light 75% of F_lim 1.01 (0.19) 0 (5.42) -0.2 (0.83) -0.46 (0.41) 0.8 (0.3) 0.13 (1) 1.75 (0.64) 0.75 (0.22) 0.07 (0.74)
Slow Low 1.25 0.44 fixed 0.35 2 no no Light 75% of F_lim 0.87 (0.28) 0 (4.42) -0.23 (0.75) -0.53 (0.39) 0.82 (0.31) 0.13 (0.97) 1.28 (0.66) 0.39 (0.35) 0.08 (0.75)
Slow Low 0.77 0.44 fixed 0.46 2 no no Light 75% of F_lim 1.06 (0.16) 0 (5.95) -0.12 (1.11) -0.3 (0.62) 0.8 (0.34) 0.13 (1.07) 1.23 (0.75) 0.74 (0.21) 0.06 (0.77)
Slow Low 1.25 0.44 fixed 0.46 2 no no Light 75% of F_lim 0.94 (0.22) 0 (5.52) -0.16 (0.96) -0.39 (0.56) 0.81 (0.34) 0.13 (1.04) 0.9 (0.77) 0.41 (0.31) 0.07 (0.77)
Slow Low 0.77 0.00 fixed 0.35 2 no no Moderate 75% of F_lim 1.11 (0.23) 0 (8.71) -0.1 (1.36) -0.24 (1.07) 0.78 (0.18) 0.09 (1.16) 1.44 (0.41) 0.99 (0.29) 0.06 (0.23)
Slow Low 1.25 0.00 fixed 0.35 2 no no Moderate 75% of F_lim 1.03 (0.4) 0 (3.88) -0.13 (2.38) -0.29 (2.32) 0.78 (0.18) 0.09 (1.12) 1.34 (0.53) 0.89 (0.66) 0.07 (0.23)
Slow Low 0.77 0.44 fixed 0.35 2 no no Moderate 75% of F_lim 1.06 (0.2) 0 (10.8) -0.12 (0.94) -0.28 (0.63) 0.79 (0.17) 0.09 (1.14) 1.21 (0.38) 0.71 (0.22) 0.06 (0.24)
Slow Low 1.25 0.44 fixed 0.35 2 no no Moderate 75% of F_lim 0.89 (0.29) 0 (4.7) -0.17 (0.83) -0.38 (0.54) 0.79 (0.17) 0.09 (1.1) 0.88 (0.42) 0.37 (0.36) 0.06 (0.25)
Slow Low 0.77 0.44 fixed 0.46 2 no no Moderate 75% of F_lim 1.09 (0.16) 0 (17.32) -0.03 (2.71) -0.08 (2.41) 0.77 (0.18) 0.04 (1.34) 0.83 (0.39) 0.71 (0.2) 0.05 (0.22)
Slow Low 1.25 0.44 fixed 0.46 2 no no Moderate 75% of F_lim 0.97 (0.23) 0 (12.24) -0.08 (1.63) -0.2 (1.27) 0.78 (0.18) 0.07 (1.31) 0.6 (0.42) 0.39 (0.32) 0.05 (0.23)
Slow Low 0.77 0.00 fixed 0.35 2 no no Heavy 75% of F_lim 1.14 (0.23) 0 (14.27) 0.09 (1.55) 0.21 (1.41) 0.76 (0.14) 0.04 (1.33) 0.77 (0.34) 0.95 (0.26) 0.05 (0.18)
Slow Low 1.25 0.00 fixed 0.35 2 no no Heavy 75% of F_lim 1.09 (0.36) 0 (3.53) 0.05 (2.49) 0.16 (2.15) 0.76 (0.14) 0.04 (1.26) 0.72 (0.56) 0.84 (0.48) 0.06 (0.2)
Slow Low 1.25 0.44 fixed 0.35 2 no no Heavy 75% of F_lim 0.9 (0.29) 0 (5.07) 0.02 (5.56) -0.05 (13.19) 0.77 (0.15) 0.04 (1.34) 0.4 (0.36) 0.32 (0.35) 0.05 (0.18)
Slow High 0.77 0.00 fixed 0.35 2 no no Light OFL 0.79 (0.54) 0.09 (1.23) -0.27 (0.94) -0.62 (0.61) 1.36 (0.54) 0.4 (0.64) 2.82 (0.78) 0.77 (0.54) 0.18 (0.61)
Slow High 1.25 0.00 fixed 0.35 2 no no Light OFL 0.73 (0.64) 0.13 (1.13) -0.29 (1.02) -0.64 (0.86) 1.32 (0.56) 0.42 (0.63) 2.52 (0.88) 0.67 (0.73) 0.19 (0.62)
Slow High 0.77 0.44 fixed 0.35 2 no no Light OFL 0.76 (0.57) 0.12 (1.21) -0.3 (0.87) -0.64 (0.53) 1.38 (0.54) 0.42 (0.64) 2.38 (0.75) 0.54 (0.55) 0.19 (0.62)
Slow High 1.25 0.44 fixed 0.35 2 no no Light OFL 0.53 (0.7) 0.16 (1.08) -0.32 (0.81) -0.7 (0.47) 1.41 (0.55) 0.42 (0.64) 1.69 (0.77) 0.25 (0.72) 0.2 (0.65)
Slow High 0.77 0.44 fixed 0.46 2 no no Light OFL 0.88 (0.41) 0 (1.45) -0.19 (1.07) -0.46 (0.69) 1.26 (0.59) 0.4 (0.69) 1.7 (0.89) 0.61 (0.46) 0.15 (0.7)
Slow High 1.25 0.44 fixed 0.46 2 no no Light OFL 0.72 (0.5) 0.06 (1.33) -0.23 (0.98) -0.55 (0.6) 1.26 (0.6) 0.4 (0.68) 1.2 (0.9) 0.33 (0.59) 0.16 (0.74)
Slow High 0.77 0.00 fixed 0.35 2 no no Moderate OFL 0.81 (0.56) 0.03 (1.33) -0.2 (1.14) -0.46 (0.85) 1.2 (0.55) 0.46 (0.62) 2.04 (0.67) 0.8 (0.54) 0.14 (0.51)
Slow High 1.25 0.00 fixed 0.35 2 no no Moderate OFL 0.75 (0.69) 0.11 (1.18) -0.22 (1.32) -0.49 (1.19) 1.22 (0.58) 0.47 (0.62) 1.95 (0.76) 0.69 (0.88) 0.15 (0.51)
Slow High 0.77 0.44 fixed 0.35 2 no no Moderate OFL 0.72 (0.56) 0.07 (1.3) -0.22 (1) -0.5 (0.64) 1.21 (0.53) 0.47 (0.6) 1.72 (0.65) 0.52 (0.52) 0.14 (0.55)
Slow High 1.25 0.44 fixed 0.35 2 no no Moderate OFL 0.54 (0.69) 0.18 (1.09) -0.26 (0.9) -0.58 (0.54) 1.24 (0.53) 0.47 (0.59) 1.26 (0.68) 0.23 (0.73) 0.15 (0.6)
Slow High 0.77 0.44 fixed 0.46 2 no no Moderate OFL 0.84 (0.42) 0 (1.67) -0.11 (1.48) -0.29 (1.15) 1.16 (0.57) 0.49 (0.66) 1.17 (0.78) 0.63 (0.4) 0.11 (0.59)
Slow High 1.25 0.44 fixed 0.46 2 no no Moderate OFL 0.71 (0.51) 0 (1.42) -0.16 (1.25) -0.39 (0.87) 1.16 (0.57) 0.49 (0.65) 0.82 (0.8) 0.32 (0.55) 0.12 (0.64)
Slow High 0.77 0.00 fixed 0.35 2 no no Heavy OFL 0.86 (0.53) 0 (1.41) 0.01 (6.81) -0.02 (15.25) 1.07 (0.49) 0.41 (0.66) 0.99 (0.63) 0.75 (0.48) 0.11 (0.27)
Slow High 1.25 0.00 fixed 0.35 2 no no Heavy OFL 0.81 (0.64) 0.11 (1.2) -0.03 (14.16) -0.13 (91.55) 1.08 (0.51) 0.41 (0.66) 0.95 (0.83) 0.65 (0.68) 0.12 (0.27)
Slow High 0.77 0.44 fixed 0.35 2 no no Heavy OFL 0.85 (0.54) 0 (1.53) 0 (5.14) -0.09 (4.17) 1.04 (0.52) 0.4 (0.68) 0.74 (0.6) 0.52 (0.49) 0.11 (0.31)
Slow High 1.25 0.44 fixed 0.35 2 no no Heavy OFL 0.64 (0.65) 0.07 (1.27) -0.07 (2.89) -0.23 (1.7) 1.06 (0.54) 0.4 (0.68) 0.49 (0.65) 0.23 (0.63) 0.12 (0.33)
Slow High 0.77 0.44 fixed 0.46 2 no no Heavy OFL 0.93 (0.4) 0 (1.91) 0.09 (3.76) 0.18 (2.23) 1.04 (0.51) 0.42 (0.71) 0.55 (0.6) 0.59 (0.39) 0.09 (0.24)
Slow High 1.25 0.44 fixed 0.46 2 no no Heavy OFL 0.76 (0.48) 0 (1.52) 0.03 (31.8) 0.01 (41.46) 1.05 (0.52) 0.42 (0.7) 0.38 (0.66) 0.27 (0.5) 0.09 (0.26)
Slow High 0.77 0.00 fixed 0.35 2 no no Light P* var (0.38) 1 (0.44) 0.03 (1.38) -0.23 (0.99) -0.57 (0.66) 1.12 (0.49) 0.24 (0.75) 2.58 (0.81) 0.85 (0.48) 0.18 (0.61)
Slow High 1.25 0.00 fixed 0.35 2 no no Light P* var (0.38) 0.93 (0.52) 0.09 (1.29) -0.27 (1.08) -0.57 (0.96) 1.11 (0.5) 0.24 (0.74) 2.31 (0.91) 0.72 (0.67) 0.19 (0.61)
Slow High 0.77 0.44 fixed 0.35 2 no no Light P* var (0.38) 0.93 (0.45) 0.07 (1.38) -0.27 (0.92) -0.59 (0.56) 1.15 (0.49) 0.24 (0.75) 2.18 (0.78) 0.62 (0.48) 0.18 (0.62)
Slow High 1.25 0.44 fixed 0.35 2 no no Light P* var (0.38) 0.78 (0.52) 0.09 (1.29) -0.3 (0.85) -0.64 (0.5) 1.15 (0.49) 0.24 (0.75) 1.54 (0.8) 0.3 (0.61) 0.19 (0.65)
Slow High 0.77 0.44 fixed 0.46 2 no no Light P* var (0.38) 0.99 (0.34) 0 (1.59) -0.17 (1.13) -0.41 (0.74) 1.08 (0.57) 0.23 (0.82) 1.55 (0.92) 0.62 (0.45) 0.16 (0.7)
Slow High 1.25 0.44 fixed 0.46 2 no no Light P* var (0.38) 0.88 (0.4) 0 (1.55) -0.21 (1.03) -0.5 (0.64) 1.08 (0.56) 0.24 (0.82) 1.09 (0.94) 0.33 (0.56) 0.16 (0.73)
Slow High 0.77 0.00 fixed 0.35 2 no no Moderate P* var (0.38) 0.98 (0.47) 0 (1.58) -0.17 (1.26) -0.37 (1.02) 1.02 (0.5) 0.31 (0.72) 1.87 (0.7) 0.87 (0.49) 0.14 (0.5)
Slow High 1.25 0.00 fixed 0.35 2 no no Moderate P* var (0.38) 0.93 (0.58) 0 (1.41) -0.19 (1.48) -0.42 (1.5) 1 (0.51) 0.31 (0.72) 1.79 (0.79) 0.76 (0.84) 0.15 (0.5)
Slow High 0.77 0.44 fixed 0.35 2 no no Moderate P* var (0.38) 0.92 (0.44) 0 (1.65) -0.19 (1.1) -0.43 (0.73) 1.02 (0.47) 0.31 (0.7) 1.58 (0.69) 0.59 (0.46) 0.14 (0.52)
Slow High 1.25 0.44 fixed 0.35 2 no no Moderate P* var (0.38) 0.77 (0.52) 0.02 (1.42) -0.23 (0.97) -0.52 (0.6) 1 (0.47) 0.29 (0.7) 1.15 (0.71) 0.28 (0.63) 0.15 (0.56)
Slow High 0.77 0.44 fixed 0.46 2 no no Moderate P* var (0.38) 0.98 (0.36) 0 (2) -0.09 (1.69) -0.22 (1.46) 1.01 (0.56) 0.31 (0.77) 1.07 (0.83) 0.62 (0.4) 0.12 (0.59)
Slow High 1.25 0.44 fixed 0.46 2 no no Moderate P* var (0.38) 0.86 (0.42) 0 (1.83) -0.13 (1.39) -0.32 (1.03) 0.99 (0.56) 0.31 (0.78) 0.75 (0.85) 0.33 (0.53) 0.12 (0.62)
Slow High 0.77 0.00 fixed 0.35 2 no no Heavy P* var (0.38) 1.05 (0.45) 0 (1.6) 0.07 (15.94) 0.1 (4.16) 0.9 (0.47) 0.31 (0.76) 0.82 (0.7) 0.79 (0.46) 0.12 (0.24)
Slow High 1.25 0.00 fixed 0.35 2 no no Heavy P* var (0.38) 1.02 (0.54) 0.02 (1.35) 0.04 (10.71) 0.03 (4.51) 0.88 (0.49) 0.29 (0.76) 0.8 (0.9) 0.72 (0.64) 0.13 (0.25)
Slow High 0.77 0.44 fixed 0.35 2 no no Heavy P* var (0.38) 1.03 (0.44) 0 (1.81) 0.05 (39.82) 0.06 (10.14) 0.86 (0.47) 0.28 (0.78) 0.62 (0.68) 0.56 (0.45) 0.12 (0.27)
Slow High 1.25 0.44 fixed 0.35 2 no no Heavy P* var (0.38) 0.87 (0.51) 0 (1.68) -0.01 (6.86) -0.1 (3.87) 0.85 (0.48) 0.27 (0.77) 0.42 (0.73) 0.26 (0.58) 0.12 (0.28)
Slow High 0.77 0.44 fixed 0.46 2 no no Heavy P* var (0.38) 1.05 (0.35) 0 (2.31) 0.15 (1.69) 0.31 (1.21) 0.86 (0.51) 0.29 (0.84) 0.42 (0.7) 0.6 (0.4) 0.09 (0.23)
Slow High 1.25 0.44 fixed 0.46 2 no no Heavy P* var (0.38) 0.9 (0.4) 0 (1.95) 0.09 (3.4) 0.15 (2.82) 0.84 (0.52) 0.27 (0.85) 0.29 (0.76) 0.3 (0.49) 0.1 (0.24)
Slow High 0.77 0.00 fixed 0.35 2 no no Light P* varied (0.7) 1.09 (0.4) 0 (1.45) -0.21 (1.03) -0.53 (0.7) 1.01 (0.49) 0.2 (0.79) 2.42 (0.84) 0.87 (0.47) 0.18 (0.62)
Slow High 1.25 0.00 fixed 0.35 2 no no Light P* varied (0.7) 1.02 (0.48) 0.04 (1.38) -0.25 (1.12) -0.53 (1.04) 1 (0.5) 0.2 (0.79) 2.16 (0.94) 0.75 (0.66) 0.19 (0.62)
Slow High 0.77 0.44 fixed 0.35 2 no no Light P* varied (0.7) 1.03 (0.42) 0.01 (1.37) -0.25 (0.96) -0.55 (0.59) 1.04 (0.5) 0.2 (0.79) 2.05 (0.81) 0.63 (0.46) 0.18 (0.64)
Slow High 1.25 0.44 fixed 0.35 2 no no Light P* varied (0.7) 0.89 (0.47) 0.07 (1.4) -0.28 (0.88) -0.61 (0.52) 1.03 (0.49) 0.2 (0.8) 1.44 (0.83) 0.32 (0.59) 0.19 (0.66)
Slow High 0.77 0.44 fixed 0.46 2 no no Light P* varied (0.7) 1.06 (0.32) 0 (1.54) -0.15 (1.17) -0.38 (0.78) 0.98 (0.58) 0.2 (0.87) 1.45 (0.95) 0.62 (0.45) 0.16 (0.71)
Slow High 1.25 0.44 fixed 0.46 2 no no Light P* varied (0.7) 0.96 (0.37) 0 (1.64) -0.19 (1.06) -0.47 (0.67) 0.98 (0.58) 0.18 (0.88) 1.03 (0.97) 0.34 (0.57) 0.16 (0.74)
Slow High 0.77 0.00 fixed 0.35 2 no no Moderate P* varied (0.7) 1.07 (0.44) 0 (1.76) -0.15 (1.36) -0.35 (1.16) 0.92 (0.5) 0.27 (0.79) 1.75 (0.73) 0.88 (0.48) 0.14 (0.49)
Slow High 1.25 0.00 fixed 0.35 2 no no Moderate P* varied (0.7) 1.02 (0.54) 0 (1.53) -0.18 (1.62) -0.38 (1.78) 0.91 (0.52) 0.27 (0.79) 1.68 (0.81) 0.78 (0.83) 0.15 (0.51)
Slow High 0.77 0.44 fixed 0.35 2 no no Moderate P* varied (0.7) 1.02 (0.41) 0 (1.77) -0.17 (1.18) -0.38 (0.81) 0.93 (0.47) 0.26 (0.76) 1.48 (0.71) 0.62 (0.44) 0.14 (0.52)
Slow High 1.25 0.44 fixed 0.35 2 no no Moderate P* varied (0.7) 0.87 (0.48) 0 (1.63) -0.21 (1.03) -0.48 (0.65) 0.91 (0.47) 0.24 (0.76) 1.08 (0.74) 0.29 (0.6) 0.14 (0.56)
Slow High 0.77 0.44 fixed 0.46 2 no no Moderate P* varied (0.7) 1.05 (0.34) 0 (2.13) -0.07 (1.87) -0.17 (1.75) 0.93 (0.57) 0.27 (0.84) 1 (0.87) 0.63 (0.4) 0.12 (0.6)
Slow High 1.25 0.44 fixed 0.46 2 no no Moderate P* varied (0.7) 0.93 (0.39) 0 (2.03) -0.12 (1.51) -0.29 (1.17) 0.91 (0.56) 0.27 (0.84) 0.7 (0.88) 0.33 (0.53) 0.12 (0.62)
Slow High 0.77 0.00 fixed 0.35 2 no no Heavy P* varied (0.7) 1.14 (0.42) 0 (1.8) 0.11 (5.08) 0.18 (2.44) 0.81 (0.48) 0.23 (0.84) 0.72 (0.74) 0.83 (0.45) 0.12 (0.24)
Slow High 1.25 0.00 fixed 0.35 2 no no Heavy P* varied (0.7) 1.11 (0.51) 0 (1.47) 0.07 (5.18) 0.12 (2.9) 0.78 (0.49) 0.22 (0.84) 0.69 (0.96) 0.75 (0.63) 0.13 (0.24)
Slow High 0.77 0.44 fixed 0.35 2 no no Heavy P* varied (0.7) 1.13 (0.41) 0 (2.03) 0.09 (6.04) 0.13 (3.49) 0.78 (0.48) 0.22 (0.86) 0.55 (0.73) 0.58 (0.44) 0.12 (0.26)
Slow High 1.25 0.44 fixed 0.35 2 no no Heavy P* varied (0.7) 0.97 (0.47) 0 (1.84) 0.02 (50.18) -0.03 (12.66) 0.76 (0.49) 0.2 (0.86) 0.38 (0.77) 0.28 (0.57) 0.12 (0.27)
Slow High 0.77 0.44 fixed 0.46 2 no no Heavy P* varied (0.7) 1.12 (0.33) 0 (2.76) 0.19 (1.25) 0.39 (0.97) 0.77 (0.51) 0.22 (0.93) 0.34 (0.77) 0.61 (0.4) 0.1 (0.23)
Slow High 1.25 0.44 fixed 0.46 2 no no Heavy P* varied (0.7) 0.98 (0.38) 0 (2.19) 0.12 (2.19) 0.22 (1.88) 0.75 (0.51) 0.22 (0.95) 0.24 (0.83) 0.3 (0.5) 0.1 (0.23)
Slow High 0.77 0.00 fixed 0.35 2 no no Light P* varied (1.0) 1.15 (0.39) 0 (1.45) -0.2 (1.07) -0.5 (0.74) 0.95 (0.5) 0.18 (0.83) 2.31 (0.85) 0.88 (0.47) 0.17 (0.64)
Slow High 1.25 0.00 fixed 0.35 2 no no Light P* varied (1.0) 1.08 (0.46) 0 (1.49) -0.23 (1.16) -0.52 (1.1) 0.93 (0.51) 0.18 (0.83) 2.06 (0.96) 0.75 (0.66) 0.18 (0.62)
Slow High 0.77 0.44 fixed 0.35 2 no no Light P* varied (1.0) 1.09 (0.4) 0 (1.37) -0.23 (0.99) -0.52 (0.61) 0.97 (0.5) 0.18 (0.83) 1.95 (0.83) 0.64 (0.46) 0.18 (0.65)
Slow High 1.25 0.44 fixed 0.35 2 no no Light P* varied (1.0) 0.94 (0.44) 0.02 (1.48) -0.27 (0.91) -0.58 (0.54) 0.97 (0.5) 0.18 (0.82) 1.37 (0.85) 0.33 (0.58) 0.19 (0.67)
Slow High 0.77 0.44 fixed 0.46 2 no no Light P* varied (1.0) 1.1 (0.31) 0 (1.55) -0.14 (1.2) -0.35 (0.82) 0.92 (0.6) 0.18 (0.91) 1.38 (0.97) 0.62 (0.46) 0.15 (0.73)
Slow High 1.25 0.44 fixed 0.46 2 no no Light P* varied (1.0) 1 (0.35) 0 (1.71) -0.18 (1.09) -0.46 (0.7) 0.92 (0.59) 0.16 (0.91) 0.97 (0.99) 0.34 (0.58) 0.16 (0.75)
Slow High 0.77 0.00 fixed 0.35 2 no no Moderate P* varied (1.0) 1.12 (0.42) 0 (1.8) -0.13 (1.45) -0.31 (1.3) 0.87 (0.5) 0.22 (0.83) 1.67 (0.74) 0.88 (0.47) 0.14 (0.49)
Slow High 1.25 0.00 fixed 0.35 2 no no Moderate P* varied (1.0) 1.08 (0.52) 0 (1.63) -0.17 (1.74) -0.35 (2.04) 0.85 (0.52) 0.22 (0.84) 1.59 (0.83) 0.79 (0.82) 0.14 (0.51)
Slow High 0.77 0.44 fixed 0.35 2 no no Moderate P* varied (1.0) 1.07 (0.39) 0 (1.85) -0.16 (1.24) -0.36 (0.88) 0.88 (0.47) 0.22 (0.81) 1.41 (0.73) 0.62 (0.43) 0.13 (0.52)
Slow High 1.25 0.44 fixed 0.35 2 no no Moderate P* varied (1.0) 0.94 (0.45) 0 (1.74) -0.2 (1.08) -0.45 (0.7) 0.86 (0.47) 0.22 (0.79) 1.03 (0.75) 0.3 (0.59) 0.14 (0.56)
Slow High 0.77 0.44 fixed 0.46 2 no no Moderate P* varied (1.0) 1.09 (0.33) 0 (2.2) -0.06 (2.03) -0.14 (2.05) 0.88 (0.58) 0.22 (0.89) 0.95 (0.89) 0.63 (0.41) 0.12 (0.6)
Slow High 1.25 0.44 fixed 0.46 2 no no Moderate P* varied (1.0) 0.97 (0.38) 0 (2.12) -0.1 (1.61) -0.26 (1.29) 0.86 (0.57) 0.22 (0.89) 0.67 (0.91) 0.32 (0.53) 0.12 (0.62)
Slow High 0.77 0.00 fixed 0.35 2 no no Heavy P* varied (1.0) 1.21 (0.41) 0 (1.94) 0.14 (3.43) 0.23 (1.91) 0.75 (0.48) 0.2 (0.91) 0.65 (0.78) 0.83 (0.45) 0.11 (0.24)
Slow High 1.25 0.00 fixed 0.35 2 no no Heavy P* varied (1.0) 1.15 (0.49) 0 (1.56) 0.1 (3.82) 0.18 (2.35) 0.72 (0.5) 0.18 (0.9) 0.62 (1) 0.76 (0.62) 0.13 (0.24)
Slow High 0.77 0.44 fixed 0.35 2 no no Heavy P* varied (1.0) 1.19 (0.4) 0 (2.21) 0.12 (3.78) 0.18 (2.42) 0.73 (0.49) 0.18 (0.93) 0.5 (0.77) 0.59 (0.44) 0.11 (0.26)
Slow High 1.25 0.44 fixed 0.35 2 no no Heavy P* varied (1.0) 1.04 (0.45) 0 (1.98) 0.05 (14.67) 0.01 (27.05) 0.7 (0.5) 0.18 (0.92) 0.34 (0.81) 0.28 (0.56) 0.12 (0.26)
Slow High 0.77 0.44 fixed 0.46 2 no no Heavy P* varied (1.0) 1.16 (0.32) 0 (3.06) 0.22 (1.05) 0.44 (0.86) 0.72 (0.49) 0.18 (1) 0.29 (0.83) 0.61 (0.41) 0.1 (0.23)
Slow High 1.25 0.44 fixed 0.46 2 no no Heavy P* varied (1.0) 1.02 (0.36) 0 (2.53) 0.15 (1.76) 0.26 (1.56) 0.7 (0.5) 0.16 (1.02) 0.21 (0.89) 0.31 (0.5) 0.1 (0.23)
Slow High 0.77 0.00 fixed 0.35 2 no no Light P* fixed (0.38) 0.89 (0.49) 0.06 (1.36) -0.23 (0.99) -0.57 (0.67) 1.15 (0.55) 0.31 (0.74) 2.58 (0.81) 0.8 (0.51) 0.17 (0.64)
Slow High 1.25 0.00 fixed 0.35 2 no no Light P* fixed (0.38) 0.83 (0.59) 0.11 (1.26) -0.27 (1.08) -0.6 (0.94) 1.18 (0.57) 0.33 (0.72) 2.31 (0.91) 0.69 (0.7) 0.18 (0.63)
Slow High 0.77 0.44 fixed 0.35 2 no no Light P* fixed (0.38) 0.85 (0.52) 0.08 (1.34) -0.27 (0.92) -0.6 (0.57) 1.21 (0.54) 0.31 (0.75) 2.18 (0.78) 0.59 (0.52) 0.18 (0.64)
Slow High 1.25 0.44 fixed 0.35 2 no no Light P* fixed (0.38) 0.63 (0.64) 0.11 (1.2) -0.3 (0.85) -0.65 (0.51) 1.23 (0.56) 0.33 (0.73) 1.54 (0.8) 0.28 (0.67) 0.18 (0.68)
Slow High 0.77 0.44 fixed 0.46 2 no no Light P* fixed (0.38) 0.95 (0.38) 0 (1.58) -0.17 (1.12) -0.42 (0.74) 1.13 (0.61) 0.29 (0.79) 1.55 (0.92) 0.59 (0.45) 0.15 (0.72)
Slow High 1.25 0.44 fixed 0.46 2 no no Light P* fixed (0.38) 0.8 (0.47) 0 (1.45) -0.21 (1.03) -0.51 (0.64) 1.14 (0.62) 0.29 (0.78) 1.09 (0.94) 0.33 (0.57) 0.15 (0.75)
Slow High 0.77 0.00 fixed 0.35 2 no no Moderate P* fixed (0.38) 0.93 (0.52) 0 (1.49) -0.17 (1.26) -0.4 (0.99) 1.07 (0.56) 0.37 (0.71) 1.87 (0.7) 0.83 (0.5) 0.13 (0.54)
Slow High 1.25 0.00 fixed 0.35 2 no no Moderate P* fixed (0.38) 0.86 (0.64) 0.04 (1.33) -0.2 (1.47) -0.44 (1.4) 1.07 (0.57) 0.37 (0.71) 1.79 (0.78) 0.74 (0.85) 0.14 (0.54)
Slow High 0.77 0.44 fixed 0.35 2 no no Moderate P* fixed (0.38) 0.82 (0.51) 0 (1.51) -0.19 (1.1) -0.44 (0.73) 1.07 (0.53) 0.37 (0.69) 1.58 (0.69) 0.56 (0.48) 0.13 (0.56)
Slow High 1.25 0.44 fixed 0.35 2 no no Moderate P* fixed (0.38) 0.65 (0.63) 0.07 (1.27) -0.23 (0.97) -0.53 (0.6) 1.09 (0.54) 0.39 (0.69) 1.15 (0.71) 0.27 (0.67) 0.14 (0.61)
Slow High 0.77 0.44 fixed 0.46 2 no no Moderate P* fixed (0.38) 0.92 (0.39) 0 (1.92) -0.09 (1.66) -0.23 (1.36) 1.04 (0.58) 0.38 (0.76) 1.07 (0.82) 0.63 (0.39) 0.11 (0.63)
Slow High 1.25 0.44 fixed 0.46 2 no no Moderate P* fixed (0.38) 0.79 (0.47) 0 (1.65) -0.13 (1.37) -0.34 (0.99) 1.05 (0.58) 0.38 (0.75) 0.75 (0.84) 0.32 (0.52) 0.11 (0.67)
Slow High 0.77 0.00 fixed 0.35 2 no no Heavy P* fixed (0.38) 0.97 (0.49) 0 (1.55) 0.04 (48.38) 0.04 (8.85) 0.95 (0.5) 0.34 (0.75) 0.91 (0.64) 0.77 (0.46) 0.11 (0.25)
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Life Assessment SPR SA Projec- ABC Exploitation Control Overfished Initial Final Catch
history uncertainty σR φR h target years tions? avg.? history rule S / SMSY probability ΔS5 ΔS15 F / FMSY POF (true) C / MSY C / MSY AAV
Slow High 1.25 0.00 fixed 0.35 2 no no Heavy P* fixed (0.38) 0.92 (0.6) 0.04 (1.34) 0 (36.51) -0.02 (8.12) 0.95 (0.51) 0.36 (0.75) 0.87 (0.84) 0.68 (0.65) 0.12 (0.26)
Slow High 0.77 0.44 fixed 0.35 2 no no Heavy P* fixed (0.38) 0.97 (0.49) 0 (1.75) 0.03 (15.16) -0.01 (20.21) 0.93 (0.52) 0.31 (0.78) 0.68 (0.61) 0.54 (0.46) 0.1 (0.3)
Slow High 1.25 0.44 fixed 0.35 2 no no Heavy P* fixed (0.38) 0.75 (0.6) 0 (1.5) -0.04 (4.29) -0.15 (2.44) 0.93 (0.54) 0.31 (0.77) 0.45 (0.67) 0.25 (0.59) 0.11 (0.32)
Slow High 0.77 0.44 fixed 0.46 2 no no Heavy P* fixed (0.38) 1.01 (0.37) 0 (2.17) 0.12 (2.33) 0.24 (1.56) 0.94 (0.5) 0.34 (0.8) 0.51 (0.6) 0.59 (0.38) 0.08 (0.23)
Slow High 1.25 0.44 fixed 0.46 2 no no Heavy P* fixed (0.38) 0.83 (0.44) 0 (1.79) 0.05 (6.29) 0.06 (5.53) 0.94 (0.52) 0.36 (0.8) 0.34 (0.66) 0.29 (0.48) 0.09 (0.25)
Slow High 0.77 0.00 fixed 0.35 2 no no Light P* fixed (0.7) 0.97 (0.47) 0 (1.46) -0.21 (1.03) -0.54 (0.71) 1.06 (0.56) 0.24 (0.8) 2.42 (0.84) 0.82 (0.49) 0.17 (0.65)
Slow High 1.25 0.00 fixed 0.35 2 no no Light P* fixed (0.7) 0.91 (0.56) 0.07 (1.35) -0.25 (1.12) -0.57 (1.01) 1.07 (0.59) 0.27 (0.78) 2.16 (0.94) 0.71 (0.68) 0.17 (0.65)
Slow High 0.77 0.44 fixed 0.35 2 no no Light P* fixed (0.7) 0.93 (0.49) 0.02 (1.43) -0.25 (0.96) -0.56 (0.6) 1.11 (0.55) 0.24 (0.81) 2.05 (0.81) 0.59 (0.5) 0.17 (0.67)
Slow High 1.25 0.44 fixed 0.35 2 no no Light P* fixed (0.7) 0.71 (0.6) 0.09 (1.29) -0.28 (0.88) -0.63 (0.53) 1.11 (0.57) 0.27 (0.8) 1.44 (0.83) 0.3 (0.64) 0.18 (0.69)
Slow High 0.77 0.44 fixed 0.46 2 no no Light P* fixed (0.7) 1 (0.36) 0 (1.66) -0.15 (1.17) -0.39 (0.79) 1.04 (0.62) 0.24 (0.85) 1.45 (0.95) 0.6 (0.45) 0.14 (0.74)
Slow High 1.25 0.44 fixed 0.46 2 no no Light P* fixed (0.7) 0.85 (0.44) 0 (1.57) -0.19 (1.06) -0.49 (0.67) 1.05 (0.63) 0.24 (0.85) 1.03 (0.97) 0.34 (0.56) 0.15 (0.77)
Slow High 0.77 0.00 fixed 0.35 2 no no Moderate P* fixed (0.7) 1.01 (0.49) 0 (1.65) -0.15 (1.35) -0.36 (1.1) 0.98 (0.56) 0.31 (0.79) 1.75 (0.72) 0.86 (0.48) 0.13 (0.54)
Slow High 1.25 0.00 fixed 0.35 2 no no Moderate P* fixed (0.7) 0.93 (0.61) 0 (1.44) -0.18 (1.59) -0.41 (1.6) 0.99 (0.58) 0.31 (0.79) 1.68 (0.81) 0.75 (0.84) 0.13 (0.56)
Slow High 0.77 0.44 fixed 0.35 2 no no Moderate P* fixed (0.7) 0.89 (0.48) 0 (1.68) -0.17 (1.17) -0.39 (0.8) 0.99 (0.54) 0.31 (0.77) 1.48 (0.71) 0.58 (0.45) 0.13 (0.57)
Slow High 1.25 0.44 fixed 0.35 2 no no Moderate P* fixed (0.7) 0.74 (0.59) 0 (1.42) -0.21 (1.03) -0.5 (0.65) 0.99 (0.55) 0.31 (0.76) 1.08 (0.73) 0.28 (0.63) 0.13 (0.62)
Slow High 0.77 0.44 fixed 0.46 2 no no Moderate P* fixed (0.7) 0.98 (0.37) 0 (2.1) -0.07 (1.81) -0.2 (1.57) 0.96 (0.6) 0.3 (0.83) 1 (0.85) 0.63 (0.38) 0.1 (0.66)
Slow High 1.25 0.44 fixed 0.46 2 no no Moderate P* fixed (0.7) 0.84 (0.45) 0 (1.85) -0.12 (1.47) -0.3 (1.09) 0.97 (0.59) 0.31 (0.82) 0.7 (0.87) 0.33 (0.5) 0.11 (0.68)
Slow High 0.77 0.00 fixed 0.35 2 no no Heavy P* fixed (0.7) 1.05 (0.47) 0 (1.74) 0.06 (13.61) 0.1 (4.16) 0.88 (0.51) 0.28 (0.83) 0.85 (0.64) 0.78 (0.44) 0.1 (0.25)
Slow High 1.25 0.00 fixed 0.35 2 no no Heavy P* fixed (0.7) 1 (0.57) 0 (1.43) 0.02 (10.37) 0.03 (4.66) 0.88 (0.54) 0.29 (0.82) 0.82 (0.85) 0.7 (0.62) 0.11 (0.25)
Slow High 0.77 0.44 fixed 0.35 2 no no Heavy P* fixed (0.7) 1.05 (0.46) 0 (1.96) 0.04 (33.43) 0.05 (11.6) 0.85 (0.52) 0.24 (0.86) 0.64 (0.62) 0.55 (0.44) 0.1 (0.29)
Slow High 1.25 0.44 fixed 0.35 2 no no Heavy P* fixed (0.7) 0.84 (0.56) 0 (1.65) -0.02 (6.66) -0.1 (3.5) 0.85 (0.55) 0.24 (0.85) 0.42 (0.67) 0.26 (0.57) 0.1 (0.31)
Slow High 0.77 0.44 fixed 0.46 2 no no Heavy P* fixed (0.7) 1.06 (0.35) 0 (2.59) 0.13 (1.81) 0.29 (1.29) 0.87 (0.52) 0.27 (0.89) 0.48 (0.6) 0.59 (0.38) 0.08 (0.24)
Slow High 1.25 0.44 fixed 0.46 2 no no Heavy P* fixed (0.7) 0.89 (0.42) 0 (2.01) 0.07 (3.97) 0.11 (3.46) 0.87 (0.5) 0.27 (0.88) 0.32 (0.66) 0.29 (0.47) 0.09 (0.25)
Slow High 0.77 0.00 fixed 0.35 2 no no Light P* fixed (1.0) 1.03 (0.45) 0 (1.53) -0.2 (1.06) -0.52 (0.74) 1 (0.56) 0.22 (0.85) 2.31 (0.85) 0.83 (0.48) 0.16 (0.67)
Slow High 1.25 0.00 fixed 0.35 2 no no Light P* fixed (1.0) 0.96 (0.54) 0 (1.42) -0.23 (1.16) -0.55 (1.07) 0.99 (0.59) 0.22 (0.83) 2.06 (0.95) 0.72 (0.67) 0.17 (0.66)
Slow High 0.77 0.44 fixed 0.35 2 no no Light P* fixed (1.0) 0.99 (0.47) 0 (1.51) -0.23 (0.99) -0.54 (0.62) 1.04 (0.56) 0.22 (0.86) 1.95 (0.83) 0.59 (0.48) 0.17 (0.68)
Slow High 1.25 0.44 fixed 0.35 2 no no Light P* fixed (1.0) 0.77 (0.58) 0.04 (1.36) -0.27 (0.91) -0.61 (0.55) 1.04 (0.57) 0.22 (0.85) 1.37 (0.85) 0.32 (0.62) 0.17 (0.7)
Slow High 0.77 0.44 fixed 0.46 2 no no Light P* fixed (1.0) 1.04 (0.34) 0 (1.73) -0.14 (1.2) -0.37 (0.82) 0.97 (0.64) 0.22 (0.91) 1.38 (0.97) 0.59 (0.46) 0.14 (0.76)
Slow High 1.25 0.44 fixed 0.46 2 no no Light P* fixed (1.0) 0.89 (0.43) 0 (1.66) -0.18 (1.09) -0.47 (0.7) 0.99 (0.64) 0.22 (0.89) 0.97 (0.99) 0.34 (0.56) 0.15 (0.78)
Slow High 0.77 0.00 fixed 0.35 2 no no Moderate P* fixed (1.0) 1.07 (0.47) 0 (1.74) -0.13 (1.43) -0.33 (1.21) 0.93 (0.56) 0.27 (0.85) 1.67 (0.74) 0.85 (0.47) 0.12 (0.54)
Slow High 1.25 0.00 fixed 0.35 2 no no Moderate P* fixed (1.0) 0.98 (0.59) 0 (1.53) -0.17 (1.7) -0.38 (1.79) 0.93 (0.58) 0.27 (0.84) 1.61 (0.82) 0.76 (0.82) 0.13 (0.57)
Slow High 0.77 0.44 fixed 0.35 2 no no Moderate P* fixed (1.0) 0.96 (0.46) 0 (1.79) -0.16 (1.23) -0.37 (0.86) 0.93 (0.54) 0.24 (0.83) 1.41 (0.73) 0.59 (0.44) 0.12 (0.57)
Slow High 1.25 0.44 fixed 0.35 2 no no Moderate P* fixed (1.0) 0.8 (0.56) 0 (1.53) -0.2 (1.07) -0.48 (0.69) 0.94 (0.55) 0.27 (0.82) 1.03 (0.75) 0.29 (0.6) 0.13 (0.62)
Slow High 0.77 0.44 fixed 0.46 2 no no Moderate P* fixed (1.0) 1.02 (0.35) 0 (2.23) -0.06 (1.94) -0.17 (1.77) 0.91 (0.61) 0.24 (0.89) 0.95 (0.87) 0.62 (0.38) 0.1 (0.66)
Slow High 1.25 0.44 fixed 0.46 2 no no Moderate P* fixed (1.0) 0.87 (0.43) 0 (2) -0.11 (1.56) -0.28 (1.18) 0.91 (0.61) 0.27 (0.88) 0.67 (0.89) 0.33 (0.49) 0.11 (0.69)
Slow High 0.77 0.00 fixed 0.35 2 no no Heavy P* fixed (1.0) 1.11 (0.45) 0 (1.93) 0.08 (6.83) 0.13 (2.96) 0.83 (0.51) 0.22 (0.89) 0.81 (0.64) 0.8 (0.43) 0.1 (0.24)
Slow High 1.25 0.00 fixed 0.35 2 no no Heavy P* fixed (1.0) 1.06 (0.55) 0 (1.49) 0.03 (6.74) 0.08 (3.57) 0.82 (0.53) 0.22 (0.89) 0.78 (0.86) 0.72 (0.61) 0.11 (0.25)
Slow High 0.77 0.44 fixed 0.35 2 no no Heavy P* fixed (1.0) 1.11 (0.44) 0 (2.19) 0.06 (9.59) 0.1 (5.26) 0.8 (0.53) 0.22 (0.93) 0.61 (0.63) 0.56 (0.42) 0.1 (0.28)
Slow High 1.25 0.44 fixed 0.35 2 no no Heavy P* fixed (1.0) 0.9 (0.54) 0 (1.79) 0 (11.57) -0.07 (5.16) 0.8 (0.54) 0.22 (0.92) 0.4 (0.67) 0.27 (0.55) 0.1 (0.3)
Slow High 0.77 0.44 fixed 0.46 2 no no Heavy P* fixed (1.0) 1.1 (0.34) 0 (2.91) 0.14 (1.55) 0.33 (1.14) 0.82 (0.49) 0.22 (0.96) 0.45 (0.6) 0.59 (0.38) 0.08 (0.23)
Slow High 1.25 0.44 fixed 0.46 2 no no Heavy P* fixed (1.0) 0.93 (0.4) 0 (2.19) 0.08 (3.09) 0.14 (2.72) 0.82 (0.5) 0.22 (0.96) 0.31 (0.66) 0.29 (0.47) 0.08 (0.24)
Slow High 0.77 0.00 fixed 0.35 2 no no Light 75% of F_lim 1.08 (0.43) 0 (1.58) -0.19 (1.09) -0.49 (0.77) 0.95 (0.57) 0.2 (0.89) 2.22 (0.87) 0.83 (0.48) 0.16 (0.68)
Slow High 1.25 0.00 fixed 0.35 2 no no Light 75% of F_lim 1.01 (0.53) 0 (1.48) -0.22 (1.19) -0.54 (1.12) 0.95 (0.59) 0.2 (0.87) 1.98 (0.97) 0.72 (0.66) 0.17 (0.67)
Slow High 0.77 0.44 fixed 0.35 2 no no Light 75% of F_lim 1.03 (0.45) 0 (1.57) -0.22 (1.01) -0.51 (0.64) 0.98 (0.57) 0.19 (0.9) 1.87 (0.85) 0.6 (0.48) 0.16 (0.68)
Slow High 1.25 0.44 fixed 0.35 2 no no Light 75% of F_lim 0.81 (0.55) 0.01 (1.43) -0.26 (0.93) -0.59 (0.57) 0.98 (0.58) 0.22 (0.88) 1.33 (0.86) 0.32 (0.61) 0.17 (0.71)
Slow High 0.77 0.44 fixed 0.46 2 no no Light 75% of F_lim 1.07 (0.33) 0 (1.81) -0.13 (1.24) -0.34 (0.86) 0.92 (0.65) 0.18 (0.95) 1.31 (0.99) 0.59 (0.46) 0.14 (0.77)
Slow High 1.25 0.44 fixed 0.46 2 no no Light 75% of F_lim 0.93 (0.41) 0 (1.72) -0.17 (1.12) -0.46 (0.73) 0.93 (0.66) 0.2 (0.94) 0.93 (1.01) 0.34 (0.56) 0.15 (0.8)
Slow High 0.77 0.00 fixed 0.35 2 no no Moderate 75% of F_lim 1.11 (0.46) 0 (1.85) -0.12 (1.51) -0.29 (1.31) 0.88 (0.56) 0.24 (0.89) 1.61 (0.76) 0.86 (0.46) 0.12 (0.54)
Slow High 1.25 0.00 fixed 0.35 2 no no Moderate 75% of F_lim 1.03 (0.57) 0 (1.63) -0.16 (1.79) -0.36 (1.98) 0.88 (0.58) 0.22 (0.88) 1.55 (0.84) 0.76 (0.81) 0.13 (0.57)
Slow High 0.77 0.44 fixed 0.35 2 no no Moderate 75% of F_lim 1.02 (0.44) 0 (1.89) -0.14 (1.28) -0.34 (0.92) 0.89 (0.54) 0.23 (0.87) 1.36 (0.74) 0.6 (0.43) 0.12 (0.58)
Slow High 1.25 0.44 fixed 0.35 2 no no Moderate 75% of F_lim 0.83 (0.54) 0 (1.62) -0.18 (1.11) -0.45 (0.72) 0.89 (0.55) 0.24 (0.86) 0.99 (0.76) 0.3 (0.59) 0.12 (0.62)
Slow High 0.77 0.44 fixed 0.46 2 no no Moderate 75% of F_lim 1.06 (0.34) 0 (2.33) -0.05 (2.1) -0.14 (2.03) 0.86 (0.62) 0.21 (0.95) 0.91 (0.89) 0.62 (0.38) 0.1 (0.66)
Slow High 1.25 0.44 fixed 0.46 2 no no Moderate 75% of F_lim 0.92 (0.41) 0 (2.16) -0.1 (1.65) -0.26 (1.29) 0.86 (0.61) 0.22 (0.94) 0.64 (0.92) 0.33 (0.48) 0.1 (0.7)
Slow High 0.77 0.00 fixed 0.35 2 no no Heavy 75% of F_lim 1.16 (0.43) 0 (2.14) 0.09 (4.87) 0.17 (2.43) 0.78 (0.51) 0.2 (0.94) 0.78 (0.65) 0.81 (0.42) 0.1 (0.25)
Slow High 1.25 0.00 fixed 0.35 2 no no Heavy 75% of F_lim 1.1 (0.53) 0 (1.58) 0.05 (5.27) 0.11 (3.01) 0.78 (0.51) 0.2 (0.94) 0.75 (0.86) 0.73 (0.59) 0.11 (0.25)
Slow High 0.77 0.44 fixed 0.35 2 no no Heavy 75% of F_lim 1.16 (0.43) 0 (2.34) 0.07 (5.99) 0.13 (3.65) 0.76 (0.53) 0.18 (0.98) 0.58 (0.63) 0.57 (0.41) 0.09 (0.28)
Slow High 1.25 0.44 fixed 0.35 2 no no Heavy 75% of F_lim 0.95 (0.52) 0 (1.92) 0.01 (29.35) -0.04 (8.29) 0.76 (0.54) 0.18 (0.98) 0.39 (0.68) 0.27 (0.54) 0.1 (0.3)
Slow High 0.77 0.44 fixed 0.46 2 no no Heavy 75% of F_lim 1.13 (0.32) 0 (3.27) 0.15 (1.34) 0.36 (1.01) 0.77 (0.46) 0.18 (1.03) 0.43 (0.6) 0.58 (0.38) 0.08 (0.22)
Slow High 1.25 0.44 fixed 0.46 2 no no Heavy 75% of F_lim 0.97 (0.39) 0 (2.45) 0.09 (2.51) 0.17 (2.23) 0.77 (0.48) 0.18 (1.03) 0.29 (0.66) 0.29 (0.46) 0.08 (0.24)
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