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Introduction  
Oceanographic satellite imagery provides a powerful tool for assessing dynamic marine systems 
in a rapidly changing ocean. Remotely sensed data are well suited for environmental analysis and 
ecological forecasting as they provide long-term synoptic, near real-time coverage of 
oceanographic conditions at high spatial (1-4 km) and temporal (daily) resolutions. This work 
utilizes these long term time series, as well as global ocean reanalysis physical data, to generate 
high resolution metrics to serve as potential indicators for understanding the distribution and 
availability of the commercially important northern shortfin squid, Illex illecebrosus. Recent 
years have seen above average availability to the U.S. fishery, yet the drivers associated with the 
high abundance years are unknown. It is thought that variable population dynamics exhibited by 
Illex in the U.S. Mid-Atlantic fishery are largely influenced by oceanographic conditions of the 
Northwest Atlantic (Dawe et al. 2007, Hendrickson 2004, Hendrickson and Holmes 2004), 
which have documented significant changes over the past decade (Gangopadhyay et al. 2019, 
Gonçalves Neto et al. 2021, Seidov et al. 2021, Silver et al. 2021).  
The purpose of this working paper is to investigate a suite of oceanographic features (e.g.: 
mesoscale eddies, fronts) to assess and characterize their relationships to Illex catch rates. To 
achieve this goal, we collaborated with a multi-disciplinary group of experts across government, 
academia, and industry to generate a series of hypotheses linking oceanographic features to 
potential mechanisms driving both the ingress and egress of Illex to the southern stock 
component of the fishery. The following five general hypotheses informed the selection and 
spatial scale of covariates considered in the multivariate statistical models used in this study.   

(i)                 Frontal dynamics may create areas of high productivity (implications for 
abundance/distribution/growth/aggregation) 
(ii)              Warm core rings may serve as a transport/retention mechanism for larval 
stage/pre-recruits (implications for immigration, mortality, emigration) 
(iii)           Strength and location of warm core rings may contribute to increased primary 
productivity due to upwelling of nutrients and provide a mechanism to concentrate food 
sources for juveniles and adults (implications for aggregation, abundance, growth, 
distribution) 
(iv)             Bottom temperature may influence (optimal) habitat selection for managing 
metabolic demands of juveniles and adults (implications for emigration, growth, 
aggregation) 
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(v)               Changes in slope water composition may have profound impacts on Illex 
distribution (implications for immigration/emigration) 

The identification of oceanographic drivers of Illex catch in space and time is an important first 
step in increasing our understanding around the mechanistic processes influencing the 
availability of Illex on the northeast US continental shelf. Understanding the movement of this 
species into and out of the ecosystem and fishery is highly relevant in reaching future stock 
assessment and management goals for Illex.     
Methods 
Fishery dependent catch data 
This study uses estimates of the nominal Illex catch per unit effort (CPUE) calculated from two 
high resolution datasets maintained by the Northeast Fishery Science Center’s (NEFSC) Study 
Fleet program and Observer program from 2008-2020. The CPUE estimates used for this study 
were derived by Lowman and colleagues (2021) and resulting values were summed across weeks 
and fishing locations. The Observer data consists of catch data collected onboard commercial 
fishing vessels by professionally trained biologists (observers) at the tow level. The Study Fleet 
data is voluntary self-reported catch and effort data from individual tows collected by captains on 
participating vessels. The Observer data is collected from approximately 10% of the Illex fishing 
trips annually, with lower coverage rates in recent years. The Study Fleet data is collected from 
approximately ~ 40% of fishing trips annually, with higher coverage in recent years. The Study 
Fleet and observer datasets were for this study due to their fine scale spatiotemporal data on Illex 
catch and effort, which is required for exploring potential oceanographic indicators. Specifically, 
these datasets include detailed fishing trip location start and end points via GPS coordinates (see 
Lowman et al. 2021a, b and Jones et al. 2020 for more dataset specifics), which was instrumental 
in identifying co-located environmental conditions.  

Models run in this study utilize catch from both ‘targeted’ and ‘untargeted’ trips, in effort to 
reduce the biases implicit in using fishery dependent catch and effort data as an index of 
abundance. Combining all available tow data where catch comprises greater than 10% Illex (and 
more than 100 pounds landed), previously described as the ‘comprehensive data set’ by Jones 
and colleagues (2020), allowed for the examination of a larger number of trips over a greater 
range of space and time and the ability to capture instances of both low and high catch 
throughout the region. 

The resulting catch data was subset into two fishing fleets based on vessel hold type (Freezer 
Trawlers and ‘Wet Boats’). This decision follows work by Lowman and colleagues (2021) as 
well as correspondence via Illex Working Group meetings and industry conversations, where 
clear differences in fishing behavior and capacity were noted between fleets (Mercer et al. 2022). 
These differences stem from the highly perishable nature of this species and differential 
processing capacity of the two fleet types (Mercer et al. 2022, Lowman et al. 2021b). The 
particular set of constraints imposed by ‘wet boats’ makes them more likely to reflect real-time 
responses to oceanographic conditions and more likely to pick up an environmental signal as 
opposed to freezer trawlers which have a ‘ceiling’ or limit to the amount of squid they can take 
on board, even during instances of high squid availability. Therefore, only wet boats (vessels 
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with refrigerated sea water or ice holds) were considered for this study, excluding all freezer 
trawlers.      
Oceanographic Covariate Data  
The majority of the environmental covariates were either direct observations via remotely sensed 
satellite data or metrics derived from remote sensed products. Satellite remote sensors are an 
ideal data source for assessing dynamic marine ecosystems because they provide long-term 
synoptic, near real-time coverage of near-surface oceanographic conditions at high spatial (1-4 
km) and temporal (daily) resolutions. To understand subsurface conditions, weekly bottom 
temperature and salinity time series were derived from a daily GLORYS12V1 global ocean 
reanalysis model data (CHEMS, 2018) that was subset over the northwest Atlantic and averaged 
to create weekly products. This modeled product has a gridded 8-km horizontal resolution, up to 
50 fixed vertical depth bins, and the data are available from 1993 to 2020. 
Remote sensing data 
Daily Level 3 (L3) mapped (4km resolution, sinusoidally projected) satellite ocean color data 
(version 5.0; Sathyendranath et al, 2021) were obtained from the European Space Agency’s 
Ocean Colour Climate Change Initiative (OC-CCI) project (Sathyendranath et al., 2019). The 
OC-CCI dataset comprises of globally merged SeaWIFS, MERIS, MODIS-Aqua, VIIRS and 
Sentinel3A-OLCI data.  The L3 OC-CCI products include chlorophyll a (CHL-CCI), remote 
sensing reflectance (Rrs(λ)), and several inherent optical property products (IOPs). The CHL-
CCI blended algorithm attempts to weight the outputs of the best-performing chlorophyll 
algorithms based on the water types present, which improves performance in nearshore water 
compared to open-ocean algorithms.  
 
Daily sea surface temperature (SST) data (gridded 1km resolution) were acquired from the 
Group for High Resolution Sea Surface Temperature (GHRSST) Multiscale Ultrahigh 
Resolution (MUR, version 4.1) Level 4 (L4) data (JPL MUR MEaSUREs Project, 2015).  The 
MUR analysis ingests the Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals 
and seeks to capture small scale SST structures wherever available. The MODIS data are 
combined with lower resolution SST data from satellite infra-red and microwave sensors as well 
as in situ measurements (Chin et al. 2017).  
 
The global CHL and SST products were spatially subset to the U.S. East Coast (SW longitude=-
82.5, SW latitude=22.5, NE longitude=-51.5, NE latitude=48.5).  Weekly statistics (minimum, 
maximum, mean, standard deviation and coefficient of variation) were calculated for both CHL 
and SST.  Climatological weekly means were calculated from the entire time series (1998-2020 
for CHL and 2003-2020 for SST) to generate the anomalies.  CHL in the NES are log-normally 
distributed, thus to calculate the CHL anomaly (CHLanom) the data are first log-transformed before 
taking the difference between the weekly mean (CHLi) and the climatological mean (CHLci), 
which results in a unitless CHL anomaly ratio (Eq 1.).   

CHLanom = EXP(logln(CHLi) - logln(CHLci)) (Eq 1.)  
The SST anomaly (SSTanom) is just the difference between the weekly SST (SSTi) and the 
climatological mean (SSTci) (Eq 2.).  

SSTanom = SSTi - SSTci     (Eq 2.) 
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Oceanographic fronts 
Oceanographic fronts are narrow zones of enhanced horizontal gradients of water properties 
(temperature, salinity, chlorophyll, etc.) that represent major biogeographical/ecosystem 
boundaries and are often associated with zones of elevated primary and secondary productivity 
and can be “hot spots” of marine life and fishing (Belkin et al., 2009). For the frontal data, daily 
high resolution (1km) MODIS imagery from the Aqua and Terra satellites were acquired from 
the NASA Ocean Biology Processing Group (OBPG). The Level 1A MODIS-Aqua ocean color 
files  (NASA, 2018) were processed using the NASA Ocean Biology Processing Group SeaDAS 
software version 7.4. All MODIS imagery were spatially subset to the U.S. East Coast (SW 
longitude=-82.5, SW latitude=22.5, NE longitude=-51.5, NE latitude=48.5) using 
L1AEXTRACT_MODIS. SeaDAS’s L2GEN program was used to generate Level 2 (L2) 
products including chlorophyll a (CHL) using the default settings and optimal ancillary 
files.  MODIS-Aqua SST (4μm night and 11μm day images; NASA, 2019) and MODIS-Terra 
CHL (NASA, 2018) and SST (4μm night and 11μm day images; NASA, 2019) were downloaded 
from OBPG as L2 files. The SeaDAS L2BIN program spatially and temporally aggregated the 
L2 files to create daily Level 3 binned (L3B) files. The daily files were binned at 2 km resolution 
that are stored in a global, nearly equal-area, integerized sinusoidal grids and the CHL files use 
the default L2 ocean color flag mask.   
 
Daily CHL and SST frontal gradients were calculated using the Belkin and O’Reilly (2009) 
algorithm. CHL fronts are more diverse and complex than SST fronts and thus this algorithm 
uses a contextual median filter to preserve the main features of the CHL field, namely CHL 
enhancement on hydrographic fronts and CHL blooms. Prior to running the algorithm, the CHL 
data were log-normally transformed to account for the log-normal distribution of CHL. Because 
the gradient data are normalized differences between pixels, data from the Aqua and Terra 
sensors were merged into daily files, which were then used to create weekly frontal 
metrics.              
Derivation of frontal metrics  

In order to isolate prominent frontal features, a threshold of 0.4°C (SST) and 0.06 mgm-3(CHL) 
was applied to the frontal gradient data (Miller 2009, Suberg et al. 2019). Following methods by 
Suberg et al. (2019), the number of valid frontal pixels (Fvalid) was identified for each satellite 
image and summed across a seven-day period. The metric calculated by summing the number of 
times a pixel exceeded the frontal threshold in a given week. For example, if a pixel was 
identified as frontal on days 1, 3, 4, and 5 of a given week, it would have a Fvalid value of 4. 
This metric was used as a covariate for this study by determining the proportion of valid frontal 
pixels in a given area per week (see Table 1 and Figure 1 for details on areas of data 
extraction).    
 
Warm core rings 

Warm core rings (WCRs) are anti-cyclonic mesoscale eddies that break off from the Gulf Stream 
(GS), after it detaches from the coast around Cape Hatteras. Once detached from the stream, 
these mesoscale eddies move in a west-southwestward direction carrying the entrapped warm GS 
water through the slope sea to the US continental shelf region (Gangopadhyay et al., 2020; Silva 

https://seadas.gsfc.nasa.gov/
https://seadas.gsfc.nasa.gov/help/seadas-processing/ProcessL1aextract_modis.html
https://seadas.gsfc.nasa.gov/help/seadas-processing/ProcessL2gen.html
https://seadas.gsfc.nasa.gov/help/seadas-processing/ProcessL2bin.html
https://oceancolor.gsfc.nasa.gov/docs/format/l3bins/
https://oceancolor.gsfc.nasa.gov/atbd/ocl2flags/
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et al. 2021). When a WCR impinges on the shelf slope, its inherent anticyclonic properties 
(clockwise movement of surface waters) create differential water characteristics on opposing 
sides of the ring (Morgan and Bishop, 1977; Gawarkiewicz et al., 2001; Cenedese et al., 2013). 
On the eastern edge of the ring, cooler shelf water is entrained and exported from the shelf into 
the slope sea creating a streamer of shelf water (Gawarkiewicz et al., 2001). These shelf water 
streamers may interact with the Middle Atlantic Bight (MAB) Shelfbreak Jet resulting in an area 
of increased upwelling (Ryan et al., 1999; Forsyth et al. 2020; Forsyth et al., 2021).  Conversely 
on the western edge of the ring, there is a steepening of the shelfbreak front combined with an 
onshore flow, resulting in warmer, more saline water intrusions (Gawarkiewicz et al., 2001). 
Recent years have seen a significant increase in the number and frequency of these mesoscale 
eddies (Gangopadhyay et al., 2019) which potentially play a key role in the changing dynamics 
of the Northwest Atlantic shelf and slope waters (Gawarkiewicz et al., 2018; Harden et al., 2020; 
Chen et al., 2021; Gawarkiewicz et al., 2022).    
 
Derivation of warm core ring metrics  
(i) Ring tracking census 
A Gulf Stream ring tracking dataset of weekly ring size and location was generated from Jenifer 
Clark's Gulf Stream Charts for the years 2011 through 2020. These charts have been previously 
used to create a 38 year WCR census (Gangopadhyay et al., 2019 and 2020). Following the same 
methodology as Gangopadhyay et al. (2020), location and ring area were verified using a QGIS 
framework. Several different ring indices were created from this dataset.  
(ii) Ring occupancy 
Ring Occupancy is an index created to calculate the number of “ring days” on the Northeast 
continental shelf. A ring was considered to ‘occupy the shelf’ if the approximate radius 
(calculated from ring area assuming the ring was a perfect circle) was longer than or equal to the 
distance from the ring center to the nearest point of the 100m isobath. The number of ring days 
was calculated by combining the total number of rings on the shelf and the number of days they 
remained there. For example, in a given week, if ring A spends 3 days on the shelf, and ring B 
spends 7 days on the shelf, the ring occupancy would be equal to 10 (ring days). This index was 
calculated on weekly, monthly and annual time scales.  
(iii) Ring Footprint Index 
The Ring Footprint Index (RFI) accounts for both the amount of time a ring spends in a given 
area as well as its size, where: RFI = ring days per ring area / (total area of region * total time 
period). This index was adapted from the RFI calculated in Gangopadhyay et al. (2020). The 
numerator, ring days per ring area, multiplies the time a ring is in a given region (zone) by the 
area of the ring. This term is then divided by a second term, which multiplies the total area of the 
zone by the total time period of interest. This was calculated at a weekly time scale across 4 
different longitudinal zones binned by 5° increments (Zone 1: 75-70°W, Zone 2: 70-65°W, Zone 
3: 65-60°W, and Zone 4: 60-55°W, see Figure 2).  
(iiv) Ring Orientation 
Ring Orientation is a metric derived in effort to better understand the relationship between the 
physical properties of warm core rings and catch locations. Information about the ring angle 
accounts for (i) the processes that are related to the presence of the ring and (ii) the orientation of 
the ring traveling past a fishing point. This ring orientation metric was calculated by identifying 
ring and fishing location reference points and calculating the angle between them (Fig. 3). 
Specifically, coordinates detailing each ring’s northern, western, eastern, southern and center 

https://doi.org/10.26008/1912/bco-dmo.810182.1
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points as well as the location where the ring meets the 100 meter isobath were identified. This 
series of coordinates was then paired with fishing locations and used to generate two lines and 
their associated angles (Fig. 3). Comparison between resulting angles was used to determine the 
orientation of a given ring to individual fishing locations. For a given week, we calculated the 
distance between individual fishing points and all rings present. Ring orientation was then 
calculated between a given fishing point and the closest ring associated with that location.  

Generalized Additive Modeling  

To examine relationships between Illex CPUE and oceanographic covariates, we fit generalized 
additive models (GAMs) to the combined Study Fleet and Observer datasets. GAMs are a 
powerful statistical tool and are increasingly used in ecological contexts as they are inherently 
flexible and thus able to account for nonlinear relationships without compromising 
interpretability (Pederson et al., 2019). This flexibility stems from the additive framework of 
GAMs, which uses local smoothing functions to fit predictor variables to a response variable. 
Here, the response variable (CPUE) was adjusted via a negative binomial error distribution with 
a log link function to account for positive skew and over dispersion. Explanatory variables 
consisted of thirty-one candidate oceanographic metrics across multiple spatial scales (Table 1). 
A strength of GAMs is their ability to account for relationships between variables occurring on 
different scales. We facilitated regular correspondence among experts in the fishing industry, 
oceanography, fisheries, and management to generate a series of hypotheses describing potential 
relationships between Illex catch and key oceanographic processes. These hypotheses were used 
to inform and select the spatial scale at which each oceanographic dataset was extracted. GAMs 
were fit using an iterative variable selection process and the optimal model was chosen based on 
lowest Akaike Information Criterion (Burnham & Anderson, 2002) and highest deviance 
explained as in similar work from these datasets by Jones et al. (2020) and Lowman et al. (2021), 
for consistency. All GAMs were run in R 4.0.5 (R Core Team, 2021) using the mgcv package 
(Wood, 2011).  
 
Results 

Generalized Additive Modeling 

Generalized additive model results identified ten covariates that were significant predictors of 
Illex catch-per-unit-effort, including temporal (year, week), spatial (latitude, longitude, and 
NAFO subareas) and environmental (bottom temperature, ring footprint index, ring orientation, 
salinity at the 222 meter isobath, chlorophyll frontal activity, and standard deviation in sea 
surface temperature) variables (Table 1, Fig. 4). The full model accounted for 69.9 % of the 
deviance explained. The main temporal trends that emerged in the full model are consistent with 
findings from Jones and colleagues (2020) as well as Lowman and colleagues (2021), where 
catch is relatively stable in the beginning of the time series (2011, 2012) experiences a 
significant drop in year 2013 followed by three consecutive low years (2014, 2015, 2016) and 
significantly higher catch over the most recent four years (2017, 2018, 2019, 2020, Fig. 4h). The 
spatial smoother captured the interacting effects of latitude and longitude and identified hot spots 
of catch along the shelf break (Fig.4a). Fishing locations were categorized by Northwest Atlantic 
Fisheries Organization (NAFO) subareas, which identified differences in catch between Northern 
and Southern portions of the southern stock component (Table 2, Fig. 4k).  
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The ecological predictors revealed some interesting patterns. The most impactful ecological 
predictor in this analysis was bottom water temperature. Its effects suggest a small range of 
cooler bottom temperatures (6-10°C) support higher catch with a peak around 6.5°C (Fig. 4b). 
Salinity at 222 meters exhibits a multi-modal relationship between salinity and catch with two 
smaller peaks at 35.45 and a larger peak at 35.73 psu (Fig. 4c). Important mesoscale features 
included the presence of rings in the slope sea between 70 and 65°W longitude (i.e. Zone 2), 6 
months prior to catch, and Zone 1(between 75-70°W), 3 months prior to catch. Specifically, in a 
given week, the highest catch was associated with a ring footprint index of 0.3 (Fig. 4de). 
Additionally, there was a significant positive effect of ring orientation on Illex catch, where 
fishing locations on the eastern side of rings had significantly higher catch than fishing locations 
on the western side of a particular warm core ring (Fig. 4j).  There was a bi-modal relationship 
between catch and the variability in sea surface temperature with peaks at standard deviation 
values of 0.4 and 0.9, suggesting higher catch associated with more variable surface temperature 
conditions (Fig. 4f). Finally, chlorophyll frontal dynamics in fishing areas (i.e. the proportion of 
area identified as a chlorophyll front) revealed higher catch when greater than 40% of the area is 
identified as chlorophyll fronts (Fig. 4g). 
 
Discussion/Research Recommendations  

The results from this study largely support the hypotheses developed by the multidisciplinary 
research team and industry collaborators. In particular, results suggest a suite of environmental 
variables which may serve as indicators of Illex habitat condition or areas of increased primary 
productivity. These indicators are of interest due to their implications for identifying potential 
areas of Illex aggregation and better understanding their distribution and availability to the 
fishery. In particular, bottom temperature and ring footprint index may be useful indicators for 
habitat conditions relevant to Illex juvenile/adult and pre-recruit/larval life stages, respectively, 
whereas the remaining covariates, ring orientation, salinity, and chlorophyll frontal dynamics are 
potential indicators of areas of high productivity. Results from GAMs identified low mean 
bottom temperatures as a strong predictor of CPUE, which is consistent with results from 
surveys done by Hendrickson (2004), where juveniles were associated with deeper waters (140 -
260m) and lower bottom temperatures (9.9 ℃). Existing hypotheses around habitat conditions 
explaining the relationship between Illex occurrence and cooler bottom temperatures have been 
attributed to both the selection of cooler temperatures to manage metabolic demands and the use 
of depth to avoid predation (Benoit-Bird and Moline, 2021). Bottom temperatures on the shelf 
are highly dependent on local processes (e.g.: circulation and intrusions) and variable in space 
and time (Chen et al., 2021), therefore more research is needed to better understand this 
relationship. The lagged ring footprint index, a measure of ring occupancy in the slope sea, may 
serve as an additional indicator of habitat condition for pre-recruit/larval stages. Examining ring 
footprints in the slope sea at 6 and 3-month lag times was an effort to (i) understand slope water 
conditions in areas previously identified as important for larval stages of the Illex (Bakun and 
Csirke, 1998; Dawe et al., 2007), and (ii) gain insight into rings as potential transport/retention 
mechanisms. The significant relationship that emerged between catch and a lagged WCR 
footprint index in slope sea zones (higher catch at RFI > 0.3 in zone 2 lagged by 6 months, see 
Figure 4c), is an important result that merits further investigation as it may have implications as a 
pre-season indicator. Recent research conducted by Jones and Hendrickson, to address TOR 3, 
has identified two predominant Illex cohorts, with one cohort hatching in the winter and one 
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cohort hatching in the summer, with specific hatch times varying inter-annually (Jones and 
Hendrickson, unpublished manuscript). This work extends the findings of Hendrickson (2004) 
that a winter cohort supports the Illex fishery to include a summer cohort that supports the latter 
part of the fishery. Thus, having an indication of the total area of the slope sea occupied by 
WCRs during the winter hatch months (January - March) may provide greater understanding of 
the habitat conditions (salinity, temperature, productivity) under which newly hatched Illex are 
exposed. Increased characterization of the presence and timing of mesoscale oceanographic 
features in areas occupied by newly hatched Illex may also provide insight into the habitat 
characteristics that are favorable to newly hatched Illex, which has the potential to improve our 
ability to forward-project availability of mature squid to the fishery.  

The remaining covariates can be summed up as indicators of areas of high productivity. Namely, 
the significance of the eastern orientation of a warm core ring to a fishing point supports our 
hypotheses that that Illex abundance is likely to be higher or more concentrated on the eastern 
edge of a warm core ring. Specifically, Forsyth and colleagues (2021) have found that as a WCR 
impinges on the shelf, the interaction between the shelf streamer created on its eastern edge and 
the MAB Shelfbreak Jet can result in increased upwelling (by a factor of ten) resulting in 
enhanced productivity in those locations (Forsyth et al., 2020; Gawarkiewicz et al., 2001; 
Cenedese et al., 2013). Additionally, the strong significant relationship between high catch and 
sub-surface salinity greater than 35.6 psu (at 222 meters depth) is also an important and 
informative indicator of productivity, and indicates a meaningful relationship between mid-depth 
intrusions of Gulf Stream water and Illex squid. Near surface salinity measurements are less 
indicative of a warm core ring because surface salinity is more variable due to the mixing of 
surface waters, whereas higher salinity at a depth of 200 meters is more indicative of the 
presence of a warm core ring and also coincident with the near-bottom preference of Illex squid. 
Additionally, the 200 meter isobath is roughly the mean position of the MAB Shelfbreak Jet, 
where upwelling can reach the 26.0 isopycnal. The interaction of the jet and the highly saline 
ring water has the potential to support high levels of primary productivity (Forsyth et al., 2020; 
Oliver et al., 2021). The two smaller salinity peaks at 35.3 and 35.4 psu are likely signals of 
older rings that have mixed with surrounding slope water, characterized by smaller diameters and 
less vertical extent than rings with higher salinity of 35.7-35.8 psu (Gawarkiewicz et al., 2001; 
Silva et al., 2020).  

The relationship that emerged between higher standard deviations in sea surface temperature and 
catch is not unexpected as the highest amount of variation in sea surface temperature occurs at 
the shelf-break front (Linder and Gawarkiewicz, 1998), which is also the location of the majority 
of the fishing effort. The ecological interpretation of this trend is less clear as the variability in 
SST may simply be acting as an indicator for capturing heterogeneity in the environment, 
including bathymetric features (such as high slope). Alternatively, this relationship may serve as 
a useful indicator of changes in the water composition, where increased standard deviations are 
related to instances of slope water intrusions onto the shelf. Finally, the peaks in CPUE in areas 
where 30-50 percent of the surface is identified as chlorophyll fronts support the hypothesis that 
chlorophyll frontal activity can serve as a near-surface indicator of productivity, with biological 
implications for benthopelagic species such as Illex squid.  
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While these results are correlative in nature, they have strong implications for understanding the 
mechanistic drivers of the distribution of Illex throughout the fishery in space and time. More 
research is needed to identify and verify these potential drivers in order to move towards in-
season management and pre-season forecasting. Therefore, it is our recommendation that future 
research should focus on the following primary areas concerning Illex availability, growth, and 
aggregation to address key uncertainties in current stock assessment models. Specific research 
initiatives should include (i) increased Illex sampling efforts throughout the slope sea across 
multiple life history stages (e.g.: larval, juvenile, adult), (ii) categorization of environmental 
conditions/dynamics of proposed nursery habitat (slope water composition), (iii) isolation and 
near-real-time monitoring of the shelf break front position via satellite derived metrics, (iv.) 
standard and continuous categorization of warm core ring trajectories and other mesoscale 
features, (v) real-time monitoring of salinity maximum intrusions along shelf break, (vi) 
identification of Illex spawning locations, (vii) cooperative research aboard commercial fishing 
vessels to quantify Illex within and around WCRs during the fishing season, (viii) efforts to 
support fine scale monitoring (both spatial and temporal) including increased fleet participation 
in fine scale catch reporting, as well as inclusion of new data fields, such as details around 
location selection, in order to identify if fishing locations are reflective of fishing behavior (gear 
restrictions, steepness of slope, [mis]matches in trip length/duration with vessel processing 
abilities) or patterns in squid distribution (aggregation in areas of high productivity). 

This work has important implications for the development and understanding of future stock 
assessments. Having a better understanding of the role of environmental conditions and the 
mechanistic oceanographic underpinnings driving the productivity and movement of Illex is an 
invaluable part of its stock assessment and management. Specifically, given that multiple cohorts 
(winter and summer) are likely supporting the Illex fishery (Jones and Hendrickson, unpublished 
manuscript), it is imperative to have clarity around the core oceanographic processes driving the 
observed ingress and egress events of Illex in order to support and account for the open 
population assumption (citations needed: Manderson/Rago working papers) of this fishery in 
future stock assessment models.  
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Tables 
 
Table 1. List of all candidate variables modeled. Columns indicate range of variable in dataset used, 
spatial scale of aggregation/extraction [Northeast Continental Shelf (NES), Northwest Atlantic Fisheries 
Organization Subareas (NAFO), Northeast Continental Shelf Break (NESBR), Fishing point location (FP)], 
and whether the variable was included in the final model as well as if they were added as splines (s) or 
factors (f). 

Variable Range Spatial Scale Included 
CPUE 2008 - 2020 74 – 66° W ,  35 – 45° N Yes (response) 
Year 2011 - 2020 NES Yes (f) 

Week 18 – 44 NES Yes (f) 
Longitude 74.9 - 66.5  NES Yes (s) 
Latitude 35.9 - 45.5 NES Yes (s) 

CHL anomaly 0.53 - 2.08 NAFO No (s) 
CHL mean  0.35 – 2.11 NAFO No (s) 

CHL std. deviation 0.04 – 1.28 NAFO No (s) 
SST anomaly -2.50 – 2.28 NAFO No (s) 

SST mean 10.24 – 28.41 NAFO No (s) 
SST std. deviation 0.17 – 1.58 NAFO Yes (s) 

CHL Fvalid 0.00 – 0.72 NESBR Yes (s) 
SST Fvalid 0.00 – 0.30 NESBR No (s) 

Bottom temp 3.75 – 14.04 FP Yes (s) 
Salinity 47m 34.55 – 35.92 NESBR No (s) 
Salinity 55m 33.56 – 36.04 NESBR No (s) 

Salinity 110m  34.86 – 36.05 NESBR No (s) 
Salinity 222m  35.21 – 35.83   NESBR Yes (s) 

Distance to ring (km) 3.45 – 886.68 KM No (s) 
Ring distance to shelf (km) 15.41 – 264.58 KM No (s) 

RFI, Zone 1 0.00 - 0.37 75 – 70° W No (s) 
RFI, Zone 2 0.00 – 0.64 70 – 65° W No (s) 
RFI, Zone 3 0.00 – 0.55 65 – 60° W No (s) 
RFI, Zone 4 0. 00 – 0.45 60 – 55°W No (s) 

RFI, Zone 1, lag 6mo 0.00 – 0.30 75 – 70° W No (s) 
RFI, Zone 2, lag 6mo 0.00 – 0.39 70 – 65° W Yes (s) 
RFI, Zone 3, lag 6mo 0.00 – 0.43 65 – 60° W No (s) 
RFI, Zone 4, lag 6mo 0.00 – 0.58 60 – 55°W No (s) 
RFI, Zone 1, lag 3mo 0.00 – 0.38 75 – 70° W Yes (s) 
RFI, Zone 2, lag 3mo 0.00 – 0.55 70 – 65° W No (s) 
RFI, Zone 3, lag 3mo 0. 00 – 0.43 65 – 60° W No (s) 
RFI, Zone 4, lag 3mo 0. 00 – 0.42 60 – 55°W No (s) 

Shelf occupancy 0.00 – 15.00 NES No (s) 
Shelf_occ_Lag6mo 0.00 – 14.00 NES No (s) 

Ring orientation West, East NES Yes (f) 
NAFO subarea 5Ze, 5Zw, 6A, 6B,6C NAFO Yes (f) 
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Table 2. Generalized additive model (GAM) results for final model covariate in relation to catch-per-unit-
effort (CPUE). Year and week effects are listed in Appendix 2.   

Parametric coefficients Estimate Std. Error z-value p-value 
Intercept  6.82321     0.09734   70.096   < 0.001 
orientation_E 0.24881 0.01438 17.306 < 0.001 
nafo_5zw -0.03275 0.05929 -0.552 < 0.001 
nafo_6a -0.74700 0.08351     -8.945   < 0.001 
nafo_6b -1.50859 0.08423 -17.911 < 0.001 
nafo_6c -1.77094 0.12805 -13.830 < 0.001 
Smooth terms   edf Ref.df Chi.sq p-value 

s(lon, lat) 23.927 23.999 52952 < 0.001 

s(bt) 8.895 9.000 2325 < 0.001 

s(sal_222m) 8.983 9.000 3413 < 0.001 

s(z2_lag6mo) 
 

8.976 9.000 4752 < 0.001 
 

s(z1_lag3mo) 8.994 9.000 3928 < 0.001 

s(sst_sd) 8.804 8.988 1429 < 0.001 

s(fvalid_chl) 8.964 9.000 1452 < 0.001 
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Figures  

Figure 1. Map of Northeast U.S. Continental Shelf Large Marine Ecosystem (NES LME). The colored boxes 
indicate the bounds of the NAFO subareas. The inner black boundary within NAFO subareas outlines the 
Northeast Shelf Break (NESBR) region which extends 40 km on either side of the 200 meter isobath. The 
200 meter isobath is the brown line within the NESBR region. Zone indicates a given region from which 
the Ring Footprint Index (RFI) was derived and are longitudinal zones binned by 5 ° increments (Zone 1: 
75 -70 °W, Zone 2: 70-65 °W, Zone 3: 65-60 °W, Zone 460-55 °W).      
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Figure 2. Heat map of Ring Footprint Index (RFI). The yellow arrow indicates the Gulf Stream mean 
North Wall location. The color bar represents the number of ring days in 0.1 degree bins ranging from 0 
to 200. Each panel represents the region (zone) from which the RFI was derived, where (a.) Zone 1, 75 -
70 °W, (b.)  Zone 2, 70-65 °W, (c.) Zone 3: 65-60 °W, and (d.) Zone 4, 60-55 °W.      
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Figure 3. Depiction of warm core ring impingement on the shelf slope and derivation of ring orientation. 
The bathymetry line is the 100 meter isobath. The circle in the map represents a warm core ring. The 
reference points on the ring are (T = the location where the ring meets the 100 meter isobath, C = center 
of point of ring, E = Eastern point of ring). The black triangles outlined in orange (F) indicate fishing point 
locations. The Eastern side of the ring is indicated by the green shaded area and is associated with 
offshore transport processes that lead to upwelling. The Western side of the ring is indicated by the blue 
shaded area and is associated with onshore intrusions. The lines TC and CE represent the ring location in 
relation to the shelf and form the angle theta (TCE, θ). Lines FC, CE detail the relation between fishing 
point location and ring, and form the angle, alpha (FCE, α). When alpha (α, FCE) was greater than theta 
(θ, TCE), the ring was oriented West of the fishing point. Conversely, when angle alpha (α) was less than 
angle theta (θ), the ring was oriented East of the fishing point.  

  



Working Paper - Not to be cited without author's permission  
 
 
Figure 4. Generalized additive model (GAM) partial residual plots for variables with significant 
relationships to catch per unit effort (CPUE). Covariates are plotted against their splines (held constant) 
thus, the y-axis represents changes in CPUE (the response variable) relative to its mean following 
changes in the covariate. Smooths are presented in order of the strength of their relationship to CPUE: 
(a)latitude/longitude, (b) bottom temperature, (c) salinity at 222 meters depth (d) ring footprint index in 
zone 2, lagged by 6 months, (e) ring footprint index in zone 1, lagged by 3 months (f) standard deviation 
of sea surface temperature, (g) chlorophyll frontal dynamics.  
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Appendix 2.  

Family: Negative Binomial(0.629)  

Link function: log  

Formula: 

cpue ~ as.factor(year) + as.factor(week) + s(lon, lat, k = 25) +  

    s(bt) + s(sal_222m) + s(z2lag6mo) + s(z1lag3mo) + s(sst_sd) +  

    s(fvalid_chl) + orientation + nafo_zone 

Parametric coefficients: 

                               Estimate  Std. Error       z value  Pr(>|z|)     

(Intercept)                 6.82321    0.09734  70.096  < 0.0001 

as.factor(year)2012  0.38388    0.04363   8.798  < 0.0001 

as.factor(year)2013 -1.70563    0.03812 -44.739  < 0.0001 

as.factor(year)2014 -0.38135    0.04165  -9.157  < 0.0001 

as.factor(year)2015 -0.64601    0.04417 -14.626  < 0.0001 

as.factor(year)2016 -0.79377    0.04684 -16.945  < 0.0001 

as.factor(year)2017  0.56614    0.04441  12.749  < 0.0001 

as.factor(year)2018  0.48686    0.03792  12.839  < 0.0001 

as.factor(year)2019  1.15250    0.03688  31.253  < 0.0001 

as.factor(week)20   -0.17665    0.07959  -2.219  0.02646   

as.factor(week)21   -0.89393    0.18027  -4.959 7.09e-07  

as.factor(week)22    0.50851    0.08320   6.112 9.85e-10  

as.factor(week)23   -0.51258    0.07589  -6.754 1.44e-11  

as.factor(week)24    0.61085    0.07391   8.265  < 0.0001 

as.factor(week)25   -0.06688    0.07731  -0.865  0.38696     

as.factor(week)26    1.18784    0.07396  16.061  < 0.0001 

as.factor(week)27    0.63784    0.06914   9.226  < 0.0001 

as.factor(week)28    1.32318    0.07081  18.687  < 0.0001 

as.factor(week)29    1.27228    0.07501  16.962  < 0.0001 
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as.factor(week)30    1.26257    0.07557  16.708  < 0.0001 

as.factor(week)31    1.37460    0.07468  18.406  < 0.0001 

as.factor(week)32    0.21255    0.07642   2.781  0.00541  

as.factor(week)33    0.68852    0.07360   9.355  < 0.0001 

as.factor(week)34    1.16674    0.08069  14.459  < 0.0001 

as.factor(week)35    0.25462    0.07512   3.390  0.00070  

as.factor(week)36    0.76796    0.08196   9.370  < 0.0001 

as.factor(week)37    0.39209    0.08227   4.766 1.88e-06  

as.factor(week)38    0.10830    0.08547   1.267  0.20511     

as.factor(week)39   -1.95255    0.08222 -23.747  < 0.0001 

as.factor(week)40   -1.28605    0.08320 -15.457  < 0.0001 

as.factor(week)41   -2.84740    0.08034 -35.442  < 0.0001 

as.factor(week)42   -0.38399    0.08737  -4.395 1.11e-05  

as.factor(week)43   -3.41932    0.08759 -39.039  < 0.0001 

as.factor(week)44   -1.83128    0.09369 -19.546  < 0.0001 

orientationS         0.24881    0.01438  17.306  < 0.0001 

nafo_zone5zw        -0.03275    0.05929  -0.552  0.58072     

nafo_zone6a         -0.74700    0.08351  -8.945  < 0.0001 

nafo_zone6b         -1.50859    0.08423 -17.911  < 0.0001 

nafo_zone6c         -1.77094    0.12805 -13.830  < 0.0001 

--- 

Approximate significance of smooth terms: 

                 edf Ref.df Chi.sq p-value     

s(lon,lat)    23.927 23.999  52952  <0.0001 

s(bt)          8.895  8.997   2325  <0.0001 

s(sal_222m)    8.983  9.000   3413  <0.0001 

s(z2lag6mo)    8.976  9.000   4753  <0.0001 

s(z1lag3mo)    8.994  9.000   3928  <0.0001 
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s(sst_sd)      8.804  8.988   1429  <0.0001 

s(fvalid_chl)  8.964  9.000   1452  <0.0001 

R-sq.(adj) =  0.222   Deviance explained = 69.9% 

-REML = 5.8177e+05  Scale est. = 1         n = 83015 
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